Measurement of Renal Function

  • Ahmad Taher Azar
Part of the Studies in Computational Intelligence book series (SCI, volume 404)


Chronic kidney disease is a worldwide public health problem with an increasing incidence and prevalence, poor outcomes, and high cost. Outcomes of chronic kidney disease include not only kidney failure but also complications of decreased kidney function and cardiovascular disease. Current evidence suggests that some of these adverse outcomes can be prevented or delayed by early detection and treatment. Residual renal function among patients with end stage renal disease is clinically important as it contributes to adequacy of dialysis, quality of life, morbidity and mortality. The preservation of residual renal function (RRF) is important after initiating dialysis, as well as in the pre-dialysis period. Longer preservation of RRF provides better small and middle molecule removal, improved volemic status and arterial pressure control, diminished risk of vascular and valvular calcification due to better phosphate removal. Deterioration of RRF results in worsening of anemia, inflammation and malnutrition. A direct relationship between RRF value and survival in dialysis patient. is now proved.


Chronic kidney disease Residual Renal Function Glomerular Filtration Rate (GFR) Inulin Clearance Creatinine Clearance Cystatin C β-Trace Protein (BTP) Iohexol Clearance Radioisotopes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbink, F.C., Laarman, C.A., Braam, K.I., et al.: Beta-trace protein is not superior to cystatin C for the estimation of GFR in patients receiving corticosteroids. Clin. Biochem. 41(4-5), 299–305 (2008)Google Scholar
  2. 2.
    Akbari, A., Lepage, N., Keely, E., et al.: Cystatin-C and beta trace protein as markers of renal function in pregnancy. Br. J. Obstet Gynaecol. 112(5), 575–578 (2005)Google Scholar
  3. 3.
    Albrechtsson, U., Hultberg, B., Larusdottir, H., Norgren, L.: Nefrotoxicity of ionic and non-ionic contrast media in aorofemoral angiography. Acta Radiol Diagnosis. 26(5), 615–618 (1985)Google Scholar
  4. 4.
    Almen, T.: Experimental investigations of iohexol and their clinical relevance. Acta Radiol. 366, 9–19 (1983)Google Scholar
  5. 5.
    Arant, B.S., Edelmann, C.M., Spitzer, A.: The congruence of creatinine and inulin clearances in children: Use of the Technicon AutoAnalyzer. J. Pediatr. 81(3), 559–561 (1972)Google Scholar
  6. 6.
    Aufricht, C., Balbisi, A., Gerdov, C., et al.: Formula creatinine clearance as a substitute for 24-hour creatine clearance in children with kidney transplantation. Klin. Padiatr. 207(2), 59–62 (1995)Google Scholar
  7. 7.
    Back, S.E., Krutzen, E., Nilsson-Ehle, P.: Contrast media as markers for glomerular filtration: a pharmacokinetic comparison of four agents. Scand. J. Clin. Lab Invest. 48(3), 247–253 (1988)Google Scholar
  8. 8.
    Bajaj, G., Alexander, S.R., Browne, R., et al.: 125Iodine-iothalamate clearance in children. A simple method to measure glomerular filtration. Pediatr. Nephrol. 10(1), 25–28 (1996)Google Scholar
  9. 9.
    Baracskay, D., Jarjoura, D., Cugino, A., et al.: Geriatric renal function: estimating glomerular filtration in an ambulatory elderly population. Clin. Nephrol. 47(4), 222–228 (1997)Google Scholar
  10. 10.
    Beddhu, S., Samore, M.H., Roberts, M.S., et al.: Creatinine production, nutrition, and glomerular filtration rate estimation. J. Am. Soc. Nephrol. 14(4), 1000–1005 (2003)Google Scholar
  11. 11.
    Benlamri, A., Nadarajah, R., Yasin, A., et al.: Development of a beta-trace protein based formula for estimation of glomerular filtration rate. Pediatr. Nephrol. 25(3), 485–490 (2010)Google Scholar
  12. 12.
    Bjornsson, T.D.: Use of serum creatinine concentrations to determine renal function. Clin. Pharmacokinet. 4(3), 200–222 (1979)MathSciNetGoogle Scholar
  13. 13.
    Bokenkamp, A., Domanetzki, M., Zinck, R., et al.: Cystatin C—a new marker of glomerular filtration rate in children independent of age and height. Pediatrics 101(5), 875–881 (1998)Google Scholar
  14. 14.
    Bokenkamp, A., Domanetzki, M., Zinck, R., et al.: Cystatin C serum concentrations underestimate glomerular filtration rate in renal transplant recipients. Clin. Chem. 45(10), 1866–1868 (1999)Google Scholar
  15. 15.
    Bostom, A.G., Kronenberg, F., Ritz, E.: Predictive performance of renal function equations for patients with chronic kidney disease and normal serum creatinine levels. J. Am. Soc. Nephrol. 13(8), 2140–2144 (2002)Google Scholar
  16. 16.
    Bouvet, Y., Bouissou, F., Coulais, Y., et al.: GFR is better estimated by considering both serum cystatin C and creatinine levels. Pediatr. Nephrol. 21(9), 1299–1306 (2006)Google Scholar
  17. 17.
    Branten, A.J., Vervoort, G., Wetzels, J.F.: Serum creatinine is a poor marker of GFR in nephrotic syndrome. Nephrol. Dial. Transplant. 20(4), 707–711 (2005)Google Scholar
  18. 18.
    Brandstrom, E., Grzegorczyk, A., Jacobsson, L., et al.: GFR measurements with iohexol and 51Cr-EDTA: A comparison of the two favoured GFR markers in Europe. Nephrol. Dial. Transplant. 13(5), 1176–1182 (1998)Google Scholar
  19. 19.
    Brown, S.C., O’Reilly, P.H.: Iohexol Clearance for the determination of glomerular filteration rate in clinical practice: evidence for a new gold standard. J. Urol. 146(3), 675–679 (1991)Google Scholar
  20. 20.
    Bubeck, B.: Radionuclide techniques for the evaluation of renal function: advantages over conventional methodology. Curr. Opin. Nephrol. Hypertens 4(6), 514–519 (1995)Google Scholar
  21. 21.
    Cholongitas, E., Shusang, V., Marelli, L., et al.: Review article: renal function assessment in cirrhosis - difficulties and alternative measurements. Aliment Pharmacol. Ther. 26(7), 969–978 (2007)Google Scholar
  22. 22.
    Cirillo, M., Anastasio, P., De Santo, N.G.: Relation of gender, age, and body mass index to errors in predicted kidney function. Nephrol. Dial. Transplant. 20(9), 1791–1798 (2005)Google Scholar
  23. 23.
    Cockcroft, D.W., Gault, M.H.: Prediction of creatinine clearance from serum creatinine. Nephron 16(1), 31–41 (1976)Google Scholar
  24. 24.
    Cole, B.R., Giangiacomo, J., Ingelfinger, J.R., Robson, A.M.: Measurement of renal function without urine collection. A critical evaluation of the constant-infusion technic for determination of inulin and para-aminohippurate. N. Engl. J. Med. 287(22), 1109–1114 (1972)Google Scholar
  25. 25.
    Coll, E., Botey, A., Alvarez, L., Poch, E., et al.: Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am. J. Kidney Dis. 36(1), 29–34 (2000)Google Scholar
  26. 26.
    Corbett, J.V.: Laboratory tests and diagnostic procedures with nursing diagnoses, 7th edn., pp. 90–107 (2008)Google Scholar
  27. 27.
    Coresh, J., Astor, B.C., McQuillan, G., et al.: Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am. J. Kidney Dis. 39(5), 920–929 (2002)Google Scholar
  28. 28.
    Corrao, A.M., Lisi, G., Di Pasqua, G., et al.: Serum cystatin C as a reliable marker of changes in glomerular filtration rate in children with urinary tract malformations. J. Urol. 175(1), 303–309 (2006)Google Scholar
  29. 29.
    Counahan, R., Chantler, C., Ghazali, S., et al.: Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch. Intern. Med. 51(11), 875–878 (1976)Google Scholar
  30. 30.
    Davis, G.A., Chandler, M.H.: Comparison of creatinine clearance estimation methods in patients with trauma. Am. J. Health Syst. Pharm. 53(9), 1028–1032 (1996)Google Scholar
  31. 31.
    Dharnidharka, V.R., Kwon, C., Stevens, G.: Serum cystatin C is superior to serum creatinine as amarker of kidney function: ameta-analysis. Am. J. Kidney Dis. 40(2), 221–226 (2002)Google Scholar
  32. 32.
    Dworkin, L.D.: Serum cystatin C as a marker of glomerular filtration rate. Curr. Opin. Nephrol. Hypertension 10(5), 551–553 (2001)Google Scholar
  33. 33.
    Dubois, D., Dubois, E.F.: A formula to estimate the approximate surface area if height and weight be known. Nutrition 5(5), 303–311 (1989)Google Scholar
  34. 34.
    Edwards, K.D., Whyte, H.M.: Plasma creatinine level and creatinine clearance as test of renal function. Aust. Ann. Med. 8, 218–224 (1959)Google Scholar
  35. 35.
    Effersoe, P.: Relationship between endogenous 24-hour creatinine clearance and serum creatinine concentration in patients with chronic renal disease. Acta Med. Scand. 156(6), 429–434 (1957)Google Scholar
  36. 36.
    Erley, C.M., Bader, B.D., Berger, E.D., et al.: Plasma clearance of iodine contrast media as a measure of glomerular filtration rate in critically ill patients. Crit. Care Med. 29(8), 1544–1550 (2001)Google Scholar
  37. 37.
    Filler, G., Priem, F., Vollmer, I., et al.: Diagnostic sensitivity of serum cystatin for impaired glomerular filtration rate. Pediatr. Nephrol. 13(6), 501–505 (1999)Google Scholar
  38. 38.
    Filler, G., Priem, F., Lepage, N., et al.: Beta-Trace protein, cystatin C, β 2-microglobulin, and creatinine compared for detecting impaired glomerular filtration rates in children. Clin. Chem. 48(5), 729–736 (2002)Google Scholar
  39. 39.
    Filler, G., Lepage, N.: Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr. Nephrol. 18(10), 981–985 (2003)Google Scholar
  40. 40.
    Flodin, M., Jonsson, A.S., Hansson, L.O., et al.: Evaluation of Gentian cystatin C reagent on Abbot Ci8200 and calculation of glomerular filtrtation rate expressed inml/min/1.73m2 from the cystatin C values in mg/l. Scand. J. Clin. Lab Invest. 67(5), 560–567 (2007)Google Scholar
  41. 41.
    Froissart, M., Rossert, J., Jacquot, C., et al.: Predictive performance of the Modification of Diet in Renal Disease and Cockcroft-Gault equations for estimating renal function. J. Am. Soc. Nephrol. 16(3), 763–773 (2005)Google Scholar
  42. 42.
    Gaspari, F., Perico, N., Ruggenenti, P., et al.: Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J. Am. Soc. Nephrol. 6(2), 257–263 (1995)Google Scholar
  43. 43.
    Gaspari, F., Perico, N., Remuzzi, G.: Application of newer clearance techniques for the determination of glomerular filtration rate. Curr. Opin. Nephrol. Hypertens 7(6), 675–680 (1998a)Google Scholar
  44. 44.
    Gaspari, F., Perico, N., Matalone, M., et al.: Precision of plasma clearance of iohexol for estimation of GFR in patients with renal disease. J. Am. Soc. Nephrol. 9(2), 310–313 (1998b)Google Scholar
  45. 45.
    Gates, G.F.: Creatinine clearance estimation from serum creatinine values: an analysis of three mathematical models of glomerular function. Am. J. Kidney Dis. 5(3), 199–205 (1985)Google Scholar
  46. 46.
    Ghazali, S., Barratt, T.M.: Urinary excretion of calcium and magnesium in children. Arch. Dis. Child 49(2), 97–101 (1974)Google Scholar
  47. 47.
    Gerbes, A.L., Gülberg, V., Bilzer, M.: Vogeser M Evaluation of serum cystatin C concentration as a marker of renal function in patients with cirrhosis of the liver. Gut. 50(1), 106–110 (2002)Google Scholar
  48. 48.
    Gowda, S., Desai, P.B., Kulkarni, S.S., et al.: Markers of renal function tests. North Am. J. Med. Sci. 2(4), 170–173 (2010)Google Scholar
  49. 49.
    Grubb, A., Bjork, J., Lindstrom, V., et al.: A cystatin C-based formula without anthropometric variables estimates glomerular filtration rate better than creatinine clearance using the Cockcroft-Gault formula. Scand. J. Clin. Lab Invest. 65(2), 153–162 (2005a)Google Scholar
  50. 50.
    Grubb, A., Nyman, U., Bjork, J., et al.: Simple cystatin C-based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan–Barratt prediction equations for children. Clin. Chem. 51(8), 1420–1431 (2005b)Google Scholar
  51. 51.
    Guido, F., Friedrich, P., Nathalie, L., et al.: β-Trace Protein, Cystatin C, β2-Microglobulin, and Creatinine Compared for Detecting Impaired Glomerular Filtration Rates in Children. Clin. Chem. 48(5), 729–736 (2002)Google Scholar
  52. 52.
    Ham, H.R., Piepsz, A.: Estimation of glomerular filtration rate in infants and in children using a single-plasma sample method. J. Nucl. Med. 32(6), 1294–1297 (1991)Google Scholar
  53. 53.
    Hellerstein, S., Berenbom, M., Erwin, P., et al.: Timed-urine collections for renal clearance studies. Pediatr. Nephrol. 21(1), 96–101 (2006)Google Scholar
  54. 54.
    Hoek, F.J., Kemperman, F.A., Krediet, R.T.: Acomparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol. Dial Transplant. 18(10), 2024–2031 (2003)Google Scholar
  55. 55.
    Hoffmann, A., Nimtz, M., Conradt, H.: Molecular characterization of ß-trace protein in human serum and urine: a potential diagnostic marker for renal diseases. Glycobiology 7(4), 499–506 (1997)Google Scholar
  56. 56.
    Huber, A.R., Risch, L.: Recent developments in the evaluation of glomerular filtration rate: is there a place for beta-trace? Clin. Chem. 51(8), 1329–1330 (2005)Google Scholar
  57. 57.
    Hull, J.H., Hak, L.J., Koch, G.G., et al.: Influence of range of renal function and liver disease on predictability of creatinine clearance. Clin. Pharmacol. Ther. 29(4), 516–521 (1981)Google Scholar
  58. 58.
    Itoh, K., Tsushima, S., Tsukamoto, E., Tamaki, N.: Reappraisal of single-sample and gamma camera methods for determination of the glomerular filtration rate with 99mTc-DTPA. Ann. Nucl. Med. 14(3), 143–150 (2000)Google Scholar
  59. 59.
    Jelliffe, R.W.: Estimation of creatinine clearance when urine cannot be collected. Lancet 297(7706), 975–976 (1971)Google Scholar
  60. 60.
    Jelliffe, R.W.: Creatinine clearance: bedside estimate [letter]. Ann. Intern. Med. 79(4), 604–605 (1973)Google Scholar
  61. 61.
    Johnson, D.: The CARI guidelines: Evaluation of renal function. Nephrology (Carlton) 10(suppl. 4), 133–176 (2005)Google Scholar
  62. 62.
    Junge, W., Wilke, B., Halabi, A., Klein, G.: Determination of reference intervals for serum creatinine, creatinine excretion and creatinine clearance with an enzymatic and a modified Jaffe´ method. Clin. Chim. Acta 344(1-2), 137–148 (2004)Google Scholar
  63. 63.
    Kasiske, B.L., Keane, W.F.: Laboratory assessment of renal disease: clearance, urinalysis and renal biopsy. In: Brenner, B.M. (ed.) Brenner & Rector’s The Kidney, 6th edn., pp. 1129–1170. WB Saunders, Philadelphia (2000)Google Scholar
  64. 64.
    Knight, E.L., Verhave, J.C., Spiegelman, D., et al.: Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 65(4), 1416–1421 (2004)Google Scholar
  65. 65.
    Krutzen, E., Back, S.E., Nilsson-Ehle, P.: Determination of glomerular filtration rate using iohexol clearance and capillary sampling. Scand. J. Clin. Lab Invest. 50(3), 279–283 (1990)Google Scholar
  66. 66.
    Kuan, Y., Hossain, M., Surman, J., et al.: GFR prediction using the MDRD and Cockcroft and Gault equations in patients with end-stage renal disease. Nephrol. Dial. Transplant. 20(11), 2394–2401 (2005)Google Scholar
  67. 67.
    Larsson, A., Malm, J., Grubb, A., Hansson, L.O.: Calculation of glomerular filtration rate expressed in ml/min from plasma cystatin C values in mg/L. Scand. J. Clin. Lab Invest. 64(1), 25–30 (2004)Google Scholar
  68. 68.
    Laterza, O.F., Price, C.P., Scott, M.G.: Cystatin C: An improved estimator of glomerular filtration rate? Clin. Chem. 48(5), 699–707 (2002)Google Scholar
  69. 69.
    Lavender, S., Hilton, P.J., Jones, N.F.: The measurement of glomerular filtration rate in renal disease. Lancet 294(7632), 1216–1218 (1969)Google Scholar
  70. 70.
    Le Bricon, T., Thervet, E., Froissart, M., et al.: Plasma cystatin C is superior to 24-h creatinine clearance and plasma creatinine for estimation of glomerular filtration rate 3 months after kidney transplantation. Clin. Chem. 46(8 Pt 1), 1206–1207 (2000)Google Scholar
  71. 71.
    Leger, F., Bouissou, F., Coulais, Y., et al.: Estimation of glomerular filtration rate in children. Pediatr. Nephrol. 17(11), 903–907 (2002)Google Scholar
  72. 72.
    Levey, A.S.: Measurement of renal function in chronic renal disease. Kidney Int. 38, 167–184 (1990)Google Scholar
  73. 73.
    Levey, A.S., Bosch, J.P., Lewis, J.B., et al.: A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 130(6), 461–470 (1999)Google Scholar
  74. 74.
    Levey, A.S., Greene, T., Kusek, J., Beck, G.: A simplified equation to predict glomerular filtration rate from serum creatinine (abstract). J. Am. Soc. Nephrol. 11, 155A (2000)Google Scholar
  75. 75.
    Levey, A.S., Coresh, J., Balk, E., et al.: National Kidney Foundation. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann. Intern. Med. 15 139(2), 137–147 (2003)Google Scholar
  76. 76.
    Levey, A.S., Coresh, J., Greene, T., et al.: Expressing the MDRD Study equation for estimating GFR with IDMS traceable (gold standard) serum creatinine values [Abstract]. J. Am. Soc. Nephrol. 16, 69A (2005)Google Scholar
  77. 77.
    Levey, A.S., Coresh, J., Greene, T., et al.: Chronic Kidney Disease Epidemiology Collaboration. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 15 145(4), 247–254 (2006)Google Scholar
  78. 78.
    Levey, A.S., Stevens, L.A., Schmid, C.H., et al.: CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150(9), 604–612 (2009)Google Scholar
  79. 79.
    Lin, J., Knight, E.L., Hogan, M.L., et al.: A comparison of prediction equations for estimating glomerular filtration rate in adults without kidney disease. J. Am. Soc. Nephrol. 14(10), 2573–2580 (2003)Google Scholar
  80. 80.
    Lubowitz, H., Slatopolsky, E., Shankel, S.: Glomerular filtration rate: determination in patients with chronic renal disease. JAMA 199(4), 252–256 (1976)Google Scholar
  81. 81.
    Maaravi, Y., Bursztyn, M., Stessman, J.: The new Mayo Clinic equation for estimating glomerular filtration rate. Ann. Intern. Med. 142(8), 680–681 (2005)Google Scholar
  82. 82.
    MacIsaac, R.J., Tsalamandris, C., Thomas, M.C., et al.: Estimating glomerular filtration rate in diabetes: a comparison of cystatin- C- and creatinine-based methods. Diabetologia 49(7), 1686–1689 (2006)Google Scholar
  83. 83.
    Mafham, M.M., Niculescu-Duvaz, I., Barron, J., et al.: A practical method of measuring glomerular filtration rate by iohexol clearance using dried capillary blood spots. Nephron Clin. Pract. 106(3), 104–112 (2007)Google Scholar
  84. 84.
    Manetti, L., Pardini, E., Genovesi, M., et al.: Thyroid function differently affects serum cystatin C and creatinine concentrations. J. Endocrinol Invest. 28(4), 346–349 (2005)Google Scholar
  85. 85.
    Manjunath, G., Sarnak, M.J., Levey, A.S.: Prediction equations to estimate glomerular filtration rate: an update. Curr. Opin. Nephrol. Hypertens 10(6), 785–792 (2001)Google Scholar
  86. 86.
    Mawer, G.E., Lucas, S.B., Knowles, B.R., et al.: Computer-assisted prescribing of kanamycin for patients with renal insufficiency. Lancet 299(7740), 12–15 (1972)Google Scholar
  87. 87.
    Mitch, W.E., Collier, V.U., Walser, M.: Creatinine metabolism in chronic renal failure. Clin. Sci. (Lond.) 58(4), 327–335 (1980)Google Scholar
  88. 88.
    Mitchell, H.R., Kline, W.: Core curriculum in nephrology, Renal Function Testing. Am. J. Kidney Dis. 47, 174–183 (2006)Google Scholar
  89. 89.
    Mogensen, C.E., Heilskov, N.S.: Prediction of GFR from serum creatinine. Acta Endocrinol Suppl. (Copenh.) 238, 109 (1980)Google Scholar
  90. 90.
    Morris, M.C., Allanby, C.W., Toseland, P., et al.: Evaluation of a height/plasma creatinine formula in the measurement of glomerular filtration rate. Arch. Dis. Child 57(8), 611–615 (1982)Google Scholar
  91. 91.
    NKF-K/DOQI, Clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am. J. Kidney Dis. 39(2 suppl. 1) S1–S266 (2002)Google Scholar
  92. 92.
    Nilsson-Ehle, P., Grubb, A.: New markers for the determination of GFR: Iohexol clearance and cystatin C concentration. Kidney Int. 46(suppl. 47), 17–19 (1994)Google Scholar
  93. 93.
    Nilsson-Ehle, P.: Iohexol clearance for the determination of glomerular filtration rate: 15 years’ experience in clinical practice. J. Int. Fed. Clin. Chem. Lab Med. 13(2), 1–5 (2001)Google Scholar
  94. 94.
    Nolte, S., Mueller, B., Pringsheim, W.: Serumα1-microglobulin andβ2-microglobulin for the estimation of fetal glomerular renal function. Pediatr. Nephrol. 5(5), 573–577 (1991)Google Scholar
  95. 95.
    Olsen, N.V., Ladefoged, S.D., Feldt-Rasmussen, B., et al.: The effects of cimetidine on creatinine excretion, glomerular filtration rate and tubular function in renal transplant recipients. Scand. J. Clin. Lab Invest. 49(2), 155–159 (1989)Google Scholar
  96. 96.
    Perrone, R.D., Steinman, T.I., Beck, G.J., et al.: Utility of radioisotopic filtration markers in chronic renal insufficiency: Simultaneous comparison of 125I-iothalamate, 169Yb-DTPA, 99Tc-DTPA, and inulin. Am. J. Kidney Dis. 16(3), 224–235 (1990)Google Scholar
  97. 97.
    Perrone, R.D., Madias, N.E., Levey, A.S.: Serum creatinine as an index of renal function: New insights into old concepts. Clin. Chem. 38(10), 1933–1953 (1992)Google Scholar
  98. 98.
    Piepsz, A., Colarinha, P., Gordon, I., et al.: Guidelines for glomerular filtration rate determination in children. Eur. J. Nucl. Med. 28(3), BP31– BP36 (2001)Google Scholar
  99. 99.
    Piepsz, A., Tondeur, M., Ham, H.: Revisiting normal (51)Crethylenediaminetetraacetic acid clearance values in children. Eur. J. Nucl. Med. Mol. Imaging 33(12), 1477–1482 (2006)Google Scholar
  100. 100.
    Poge, U., Gerhardt, T.M., Stoffel-Wagner, B., et al.: β-Trace protein is an alternative marker for glomerular filtration rate in renal transplantation patients. Clin. Chem. 51(8), 1531–1533 (2005)Google Scholar
  101. 101.
    Poge, U., Gerhardt, T., Stoffel-Wagner, B., et al.: Can modifications of the MDRD formula improve the estimation of glomerular filtration rate in renal allograft recipients? Nephrol. Dial. Transplant. 22(1), 3610–3615 (2007)Google Scholar
  102. 102.
    Poge, U., Gerhardt, T., Stoffel-Wagner, B., et al.: Beta-trace protein-based equations for calculation of GFR in renal transplant recipients. Am. J. Transplant. 8(3), 608–615 (2008)Google Scholar
  103. 103.
    Poggio, E.D., Wang, X., Greene, T., et al.: Performance of the Modification of Diet in Renal Disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. J. Am. Soc. Nephrol. 16(2), 459–466 (2005)Google Scholar
  104. 104.
    Prigent, A., Cosgriff, P., Gates, G.F., et al.: Consensus report on quality control of quantitative measurements of renal function obtained from the renogram: International Consensus Committee from the Scientific Committee of Radionuclides in Nephrourology. Semin. Nucl. Med. 29(2), 146–159 (1999)Google Scholar
  105. 105.
    Priem, F., Althaus, H., Birnbaum, M., et al.: ß-trace protein in serum: a new marker of glomerular filtration rate in the creatinine-blind range. Clin. Chem. 45(4), 567–568 (1999)Google Scholar
  106. 106.
    Priem, F., Althaus, H., Jung, K., Sinha, P.: ß-Trace protein is not better than cystatin C as an indicator of reduced glomerular filtration rate. Clin. Chem. 47(12), 2181 (2001)Google Scholar
  107. 107.
    Pucci, L., Triscornia, S., Lucchesi, D., et al.: Cystatin C and Estimates of Renal Function: Searching for a Better Measure of Kidney Function in Diabetic Patients. Clin. Chem. 53(3), 480–488 (2007)Google Scholar
  108. 108.
    Rahn, K.H., Heidenreich, S., Bruckner, D.: How to assess glomerular function and damage in humans. J. Hypertens 17(3), 309–317 (1999)Google Scholar
  109. 109.
    Randers, E., Erlandsen, E.J.: Serum Cystanin C as an endogenous marker of the renal function a review. Clin. Chem. Lab Med. 37(4), 389–395 (1999)Google Scholar
  110. 110.
    Rartels, H., Bohmer, M.: Micro-determination of Creatinine. Clinica. Chimica. Acta 32(1), 81–85 (1971)Google Scholar
  111. 111.
    Rehberg, P.B.: Studies on kidney function. The rate of filtration and reabsorption in the human kidney. Biochem. J. 20, 447–460 (1926)Google Scholar
  112. 112.
    Rehling, M., Moller, M.L., Thamdrup, B., et al.: Simultaneous measurement of renal clearance and plasma clearance of 99mTc-labelled diethylenetriaminepenta-acetate, 51Cr-labelled ethylenediaminetetra-acetate and inulin in man. Clin. Sci. 66(5), 613–619 (1984)Google Scholar
  113. 113.
    Rehling, M., Moller, M.L., Lund, J.O., et al.: 99mTc-DTPA gamma-camera renography: normal values and rapid determination of single-kidney glomerular filtration rate. Eur. J. Nucl. Med. 11(1), 1–6 (1985)Google Scholar
  114. 114.
    Richards, A.N., Westfall, B.B., Borr, P.A.: Renal excretion of inulin, creatinine and xylose in normal dogs. Proc. Soc. Erp. Biol. Med. 32, 73–75 (1934)Google Scholar
  115. 115.
    Rodrigo, E., de Francisco, A.L., Escallada, R., et al.: Measurement of renal function in pre-ESRD patients. Kidney Int. Suppl. (80), 11–17 (2002)Google Scholar
  116. 116.
    Rule, A.D., Larson, T.S., Bergstralh, E.J., et al.: Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann. Intern. Med. 141(12), 929–937 (2004)Google Scholar
  117. 117.
    Rule, A.D., Bregstraalh, E.J., Slezak, J.M., et al.: Glomerular filtration rate estimated by cystatin C among different clinical presentations. Kidney Int. 69(2), 399–405 (2006)Google Scholar
  118. 118.
    Salazar, D.E., Corcoran, G.B.: Predicting creatinine clearance and renal drug clearance in obese patients from estimated fat-free body mass. Am. J. Med. 84(6), 1053–1060 (1988)Google Scholar
  119. 119.
    Sanaka, M., Takano, K., Shimakura, K., et al.: Serum albumin for estimating creatinine clearance in the elderly with muscle atrophy. Nephron 73(2), 137–144 (1996)Google Scholar
  120. 120.
    Schoolwerth, A.C., Engelgau, M.M., Hostetter, T.H., et al.: Chronic kidney disease: a public health problem that needs a public health action plan. Prev. Chronic. Dis. 3(2), A57 (2006)Google Scholar
  121. 121.
    Schrott, K.M., Behrends, B., Clauss, W., et al.: Iohexol in excretory urography. Fortschr. Med. 104, 153–156 (1986)Google Scholar
  122. 122.
    Schwartz, G.J., Haycock, G.B., Edelmann Jr., C.M., Spitzer, A.: A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58(2), 259–263 (1976)Google Scholar
  123. 123.
    Schwartz, G.J., Feld, L.G., Langford, D.J.: A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J. Pediatr. 104(6), 849–854 (1984)Google Scholar
  124. 124.
    Schwartz, G.J., Gauthier, B.: A simple estimate of glomerular filtration rate in adolescent boys. J. Pediatr. 106(3), 522–526 (1985)Google Scholar
  125. 125.
    Schwartz, G.J., Brion, L.P., Spitzer, A.: The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr. Clin. North Am. 34(3), 571–590 (1987)Google Scholar
  126. 126.
    Schwartz, G.J., Furth, S., Cole, S.R., et al.: Glomerular filtration rate via plasma iohexol disappearance: pilot study for chronic kidney disease in children. Kidney Int. 69(11), 2070–2077 (2006)Google Scholar
  127. 127.
    Schwartz, G.J., Munoz, A., Schneider, M.F., et al.: New equations to estimate GFR in children with CKD. J. Am. Soc. Nephrol. 20(3), 629–637 (2009)Google Scholar
  128. 128.
    Schwartz, G.J., Work, D.F.: Measurement and Estimation of GFR in Children and Adolescents. Clin. J. Am. Soc. Nephrol. 4(11), 1832–1843 (2009)Google Scholar
  129. 129.
    Shannon, J.A., Smith, H.W.: The excretion of inulin, xylose and urea by normal and phiorhizinized man. I. Clin. Invest. 14(4), 393–401 (1935)Google Scholar
  130. 130.
    Shardijin, G., Statius van Epps, L.: ß2-Microglobulin: its significance in the evaluation of renal function. Kidney International 32(5), 635–641 (1987)Google Scholar
  131. 131.
    Sherman, D.S., Fish, D.N., Teitelbaum, I.: Assessing renal function in cirrhotic patients: problems and pitfalls. Am. J. Kidney Dis. 41(2), 269–278 (2003)Google Scholar
  132. 132.
    Shlipak, M.G., Katz, R., Fried, L.F., et al.: Cystatin-C and mortality in elderly persons with heart failure. J. Am. Coll. Cardiol. 45(2), 268–271 (2005)Google Scholar
  133. 133.
    Shull, B.C., Haughley, D., Koup, J.R., et al.: Useful method for predicting creatinine clearance in children. Clin. Chem. 24(7), 1167–1199 (1978)Google Scholar
  134. 134.
    Sjostrom, P., Tidman, M., Jones, I.: Determination of the production rate and non-renal clearance of cystatin C and estimation of the glomerular filtration rate from the serum concentration of cystatin C in humans. Scand. J. Clin. Lab Invest. 65(2), 111–124 (2005)Google Scholar
  135. 135.
    Sterner, G., Frennby, B., Hultberg, B., Almen, T.: Iohexol clearance for GFR-determination in renal failure—single or multiple plasma sampling? Nephrol. Dial. Transplant. 11(3), 521–525 (1996)Google Scholar
  136. 136.
    Swan, S.K., Keane, W.F.: Clinical evaluation of renal function in primer on kidney diseases. In: Greenberg, A. (ed.) 3rd edn., pp. 25–28. Academic press (2001)Google Scholar
  137. 137.
    Tidman, M., Sjostrom, P., Jones, I.: A Comparison of GFR estimating formulae based upon s-cystatin C and s-creatinine and a combination of the two. Nephrol. Dial. Transplant. 23(1), 154–160 (2008)Google Scholar
  138. 138.
    Toto, R.D., Kirk, K.A., Coresh, J., et al.: Evaluation of serum creatinine for estimating glomerular filtration rate in African Americans with hypertensive nephrosclerosis: results from the African-American Study of Kidney Disease and Hypertension (AASK) Pilot Study. J. Am. Soc. Nephrol. 8(2), 279–287 (1997)Google Scholar
  139. 139.
    Traub, S.L., Johnson, C.E.: Comparison of methods of estimating creatinine clearance in children. Am. J. Hosp. Pharm. 37(2), 195–201 (1980)Google Scholar
  140. 140.
    Van Acker, B.A., Koomen, G.C., Koopman, M.G., et al.: Creatinine clearance during cimetidine administration for measurement of glomerular filtration rate. Lancet 340(8831), 1326–1329 (1992)Google Scholar
  141. 141.
    Verhave, J.C., Fesler, P., Ribstein, J.: Estimation of renal function in subjects with normal serum creatinine levels: influence of age and body mass index. Am. J. Kidney Dis. 46(2), 233–241 (2005)Google Scholar
  142. 142.
    Walser, M., Drew, H.H., Guldan, J.L.: Prediction of glomerular filtration rate from serum creatinine concentration in advanced chronic renal failure. Kidney Int. 44(5), 1145–1148 (1993)Google Scholar
  143. 143.
    Walser, M.: Assessing renal function from creatinine measurernent in adults with chronic renal disease. Am. J. Kidney Dis. 32(1), 23–31 (1998)Google Scholar
  144. 144.
    Weber, J.A., Van Zenten, A.P.: Interferences in current methods for measurement of creatinine. Clin. Chem. 37(5), 695–700 (1991)Google Scholar
  145. 145.
    White, C.A., Akbari, A., Doucette, S., et al.: A novel equation to estimate glomerular filtration rate using beta-trace protein. Clin. Chem. 53(11), 1965–1968 (2007)Google Scholar
  146. 146.
    Woitas, R.P., Stoffel-Wagner, B., Poege, U., et al.: Low-molecular weight proteins as markers for glomerular filtration rate. Clin. Chem. 47(12), 2179–2180 (2001)Google Scholar
  147. 147.
    Wright, J.G., Boddy, A.V., Highley, M., et al.: Estimation of glomerular filtration rate in cancer patients. Br. J. Cancer 84(4), 452–459 (2001)Google Scholar
  148. 148.
    Yukawa, E., Hamachi, Y., Higuchi, S., et al.: Predictive performance of equations to estimate creatinine clearance from serum creatinine in Japanese patients with congestive heart failure. Am. J. Ther. 6(2), 71–76 (1999)Google Scholar
  149. 149.
    Zappitelli, M., Parvex, P., Joseph, L., et al.: Derivation and validation of cystatin C-based prediction equations for GFR in children. Am. J. Kidney Dis. 48(2), 221–230 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Computer and Software Engineering Department Faculty of EngineeringMisr University for Science & Technology (MUST)6th of October CityEgypt

Personalised recommendations