Applications of Bioimpedance to End Stage Renal Disease (ESRD)

  • Laura M. Roa
  • David Naranjo
  • Javier Reina-Tosina
  • Alfonso Lara
  • José A. Milán
  • Miguel A. Estudillo
  • J. Sergio Oliva
Part of the Studies in Computational Intelligence book series (SCI, volume 404)

Abstract

This chapter develops a thorough review of the methods and techniques used for the analysis of body composition of renal patients based on bioimpedance measurements. The work ranges from the physical principles, to bioelectric models of human body, instrumentation, configurations in the position of electrodes, equations to calculate body composition, bioimpedance nephrological applications and clinical analysis of results. This text provides a multidisciplinary approach that will allow the reader to understand and comprehend this kind of technology, so it can be used both by engineers as a basis for the development of bioimpedance medical devices, and by medical staff to apply the bioimpedance analysis techniques in a better control and management of patients with ESRD.

Keywords

Bioimpedance Bioelectrical impedance analysis Body composition Overhydration Bioimpedance spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberg, P., Nicancer, I., Ollmar, S.: Minimally invasive electrical im-pedance spectroscopy of skin exemplified by skin cancer assessments. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 3211–3214 (2003)Google Scholar
  2. Akern web site (2011), http://www.akern.com/ (accessed August 2011)
  3. Al-Surkhi, O.I., Riu, P.J., Vazquez, F.F., et al.: Monitoring Cole-Cole Parameters During Haemodialysis (HD). In: Proceedings of the 29th Annual International Conference of the IEEE EMBS, pp. 2238–2241 (2007)Google Scholar
  4. Amaral, C.E.F., Wolf, B.: Effects of glucose in blood and skin impedance spectroscopy. In: AFRICON (2007), doi:10.1109Google Scholar
  5. Atzler, E., Lehmann, G.: Über ein Neues Verfahren zur Darstellung der Herztätigkeit (Dielektrographie). Arbeitsphysiol. 6, 636–680 (1931)Google Scholar
  6. Basaleem, H.O., Alwan, S.M., Ahmed, A.A., et al.: Assessment of the Nutritional Status of End-Stage Renal Disease Patients on Maintenance Hemodialysis. Saudi J. Kidney Dis. Transplant. 15(4), 455–462 (2004)Google Scholar
  7. Baumgartner, R.N., Heymsfield, S.B., Lichtman, S., et al.: Body composition in elderly people: effect of criterion estimates on predictive equations. Am. J. Clin. Nutr. 53(6), 1345–1353 (1991)Google Scholar
  8. Bodystat web site, http://www.bodystat.com/ (accessed August 2011)
  9. Buchholz, A.C., Bartok, C., Schoeller, D.A.: The Validity of Bioelectrical Impedance Models in Clinical Populations. Nutr. Clin. Pract. 19(5), 433–446 (2004)CrossRefGoogle Scholar
  10. Callaghan, J.J., Rosenberq, A.G., Rubash, H.E.: The adult knee, 2nd edn. Lippincott Williams & Wilkins (2003)Google Scholar
  11. Chamney, P.W., Krämer, M., Rode, C., et al.: A new technique for establishing dry weight in hemodialysis patients via whole body bioimpedance. Kidney Int. 61(6), 2250–2258 (2002)CrossRefGoogle Scholar
  12. Chamney, P.W., Wabel, P., Moissl, U.M., et al.: A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am. J. Clin. Nutr. 85(1), 80–89 (2007)Google Scholar
  13. Charra, B.: Fluid balance, dry weight, and blood pressure in dialysis. Hemodial. Int. 11(1), 21–31 (2007)CrossRefGoogle Scholar
  14. Coin, A., Sergi, G., Minicuci, N., et al.: Fat-free mass and fat mass reference values by dual-energy X-ray absorptiometry (DEXA) in a 20–80 year-old Italian population. Clin. Nutr. 27(1), 87–94 (2008)CrossRefGoogle Scholar
  15. Cole, K.S.: Membranes, ions and impulses: a chapter of classical biophysics. Univ. of California Press, Berkeley (1972)Google Scholar
  16. Colombo, O., Villani, S., Pinelli, G., et al.: To treat or not to treat: comparison of different criteria used to determine whether weight loss is to be recommended. Nutr. J. 7, 5 (2008)CrossRefGoogle Scholar
  17. Cornish, B.H., Thomas, B.J., Ward, L.C.: Improved prediction of extracellular and total body water using impedance loci generated by multiple frequency bioelectrical impedance analysis. Phys. Med. Biol. 38(3), 337–346 (1993)CrossRefGoogle Scholar
  18. Coupaye, M., Bouillot, J.L., Poitou, C., et al.: Is Lean Body Mass Decreased after Obesity Treatment by Adjustable Gastric Banding? Obes. Surg. 17(4), 427–433 (2007)CrossRefGoogle Scholar
  19. Cox-Reijven, P.L., Soeters, P.B.: Validation of bio-impedance spectroscopy: effects of degree of obesity and ways of calculating volumes from measured resistance values. Int. J. Obesity Rel. Metab. Disord. 24(3), 271–280 (2000)CrossRefGoogle Scholar
  20. De Lorenzo, A., Candeloro, N., Andreoli, A., et al.: Determination of intracellular water by multifrequency bioelectrical impedance. Ann. Nutr. Metab. 39(3), 177–184 (1995)CrossRefGoogle Scholar
  21. De Lorenzo, A., Andreoli, A., Matthie, J., et al.: Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J. Appl. Physiol. 82(5), 1542–1558 (1997)Google Scholar
  22. De Lorenzo, A., Sorge, R.P., Candeloro, C., et al.: New insights into body composition assessment in obese women. Can. J. Physiol. Pharmacol. 77(1), 17–21 (1999)CrossRefGoogle Scholar
  23. Deurenberg, P., van der Kooy, K., Leenen, R., et al.: Sex and age specific prediction formulas for estimating body composition from bioelectrical impedance: a cross-validation study. Int. J. Obes. 15(1), 17–25 (1991)Google Scholar
  24. Dittmar, M., Reber, H.: Evaluation of different methods for assessing intracellular fluid in healthy older people: a cross-validation study. J. Am. Geriatr. Soc. 50(1), 104–110 (2002)CrossRefGoogle Scholar
  25. Du Bois-Reymond, E.: Untersuchungen über thierische Elektricität. Reimer Verlag (1848)Google Scholar
  26. Dumler, F.: Best Method for Estimating Urea Volume of Distribution: Comparison of Single Pool Variable Volume Kinetic Modeling Measurements with Bioimpedance and Anthropometric Methods. ASAIO J. 50(3), 237–241 (2004)CrossRefGoogle Scholar
  27. Dziong, D., Bagnaninchi, P.O., Kearney, R.E., et al.: Nondestructive Online In Vitro Monitoring of Pre-Osteoblast Cell Proliferation Within Microporous Polymer Scaffolds. IEEE Trans. Nanobioscience 6(3), 249–258 (2007)CrossRefGoogle Scholar
  28. Earthman, C., Traughber, D., Dobratz, J., et al.: Bioimpedance Spectroscopy for Clinical Assessment of Fluid Distribution and Body Cell Mass. Nutr. Clin. Pract. 22(4), 389–405 (2007)CrossRefGoogle Scholar
  29. Edd, J.F., Rubinsky, B.: Assessment of the Viability of Transplant Organs with 3D Electrical Impedance Tomography. In: 27th Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 3, pp. 2644–2647 (2006)Google Scholar
  30. Edefonti, A., Paglialonga, F., Picca, M., et al.: A prospective multicentre study of the nutritional status in children on chronic peritoneal dialysis. Nephrol. Dial. Transplant. 21(7), 1946–1951 (2006)CrossRefGoogle Scholar
  31. Einthoven, W.: Un nouveau galvanometer. Arch. Néerland Sci. Exactes Naturelles 6, 625–633 (1901)Google Scholar
  32. Einthoven, W.: Le telecardiogramme. Arch. Int. Physiol. 4, 132–164 (1906)Google Scholar
  33. Eisenkolbl, J., Kartasurya, M., Widhalm, K.: Underestimation of percentage fat mass measured by bioelectrical impedance analysis compared to dual energy X-ray absorptiometry method in obese children. Eur. J. Clin. Nutr. 55(6), 423–429 (2001)CrossRefGoogle Scholar
  34. Ellis, K.J., Shypailo, R.J., Wong, W.W.: Measurement of body water by multifrequency bioelectrical impedance spectroscopy in a multiethnic pediatric population. Am. J. Clin. Nutr. 71(6), 1618 (1999)Google Scholar
  35. Espinosa-Cuevas, M.A., Hivas-Rodripuez, L., Gonzalez-Medina, E.C., et al.: Vectores de impedancia en población mexicana. Rev. Invest. Clin. 59(1), 15–24 (2007)Google Scholar
  36. Éninya, G.I., Ondzuls, P.A.: A portable rheograph for clinical studies. Biull. Eksp. Biol. Med. 52, 105–107 (1961)Google Scholar
  37. Fein, P., Chattopadhyay, J., Paluch, M.M., et al.: Enrollment Fluid Status Is Independently Associated with Long-Term Survival of Peritoneal Dialysis Patients. Adv. Perit. Dial. 24, 79–83 (2008)Google Scholar
  38. Fenech, M., Maasrani, M., Jaffrin, M.Y.: Fluid volumes determination by impedance spectroscopy and hematocrit monitoring: application to pediatric hemodialysis. Artif. Organs 25(2), 89–98 (2001)CrossRefGoogle Scholar
  39. Fenning, C.: A new method of recording physiologic activities–I: Recording respiration in small animals. J. Lab. Elin. Med. 22, 1279–1280 (1937)Google Scholar
  40. Fresenius web site, http://www.bcm-fresenius.com/ (accessed August 2011)
  41. Gabriel, C., Gabriel, S., Corthout, E.: The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41(11), 2231–2249 (1996a)CrossRefGoogle Scholar
  42. Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271–2293 (1996b)CrossRefGoogle Scholar
  43. Galvani, A.L.: De viribus electricitatis in motu musculari commentarius. De Boloniensi Scient. Et art. Instituto Etque Academia Commentarii 7, 363 (1791)Google Scholar
  44. Gibney, M.J., Elia, M., Ljungqvist, O., et al.: Clinical Nutrition. The Nutrition Society Textbook. Blackwell Science (2005)Google Scholar
  45. Grimnes, S., Martinsen, O.G.: Bioimpedance and Bioelectricity Basics. Academic Press, San Diego (2000)Google Scholar
  46. Hannan, W.J., Cowen, S.J., Fearson, K.C.H., et al.: Evaluation of multi-frequency bioimpedance analysis for the assessment of extracellular and total body water in surgical patients. Clin. Sci. (Lond.) 86(4), 479–485 (1994)Google Scholar
  47. Hannan, W.J., Cowen, S.J., Plester, C.E., et al.: Comparison of bio-impedance spectroscopy and multifrequency bio-impedance analysis for the assessment of extracellular and total body water in surgical patients. Clin. Sci. 89(5), 651–658 (1995)Google Scholar
  48. Heitmann, B.L.: Prediction of body water and fat in adult Danes from measurement of electrical impedance: A validation study. Int. J. Obes. 14(9), 789–802 (1990a)Google Scholar
  49. Heitmann, B.L.: Evaluation of body fat estimated from body mass index, skinfolds and impedance: A comparative study. Eur. J. Clin. Nutr. 44(11), 831–837 (1990b)Google Scholar
  50. Henderson, R.P., Webster, J.G.: An Impedance Camera for Spatially Specific Measurements of the Thorax. IEEE Trans. Biomed. Eng. 25(3), 250–254 (1978)CrossRefGoogle Scholar
  51. Hoeger, W.K., Hoeger, S.A.: Principles and Labs for Fitness and Wellness. Cengage Learning. Wadsworth, USA (2010)Google Scholar
  52. Hoffer, E.C., Meador, C.K., Simpson, D.C.: Correlation of whole-body impedance with total body water volume. J. Appl. Physiol. 27(4), 531–534 (1969)Google Scholar
  53. Holder, D.S.: Electrical Impedance Tomography: Methods, History and Applications. Institute of Physics Publishing (2004)Google Scholar
  54. ICNIRP: International Commission on Non-Ionizing Radiation Protection, Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields up to 300 GHz. Health Phys. 74(4), 494–522 (1998)Google Scholar
  55. ICNIRP: International Commission on Non-Ionizing Radiation Protection, ICNIRP Statement on the Guidelines for limiting exposure to time-varying electric, magnetic and electromagetic fields (up to 300 GHz). Health Phys. 97(3), 257–258 (2009)Google Scholar
  56. Impedimed web site, http://www.impedimed.com/ (accessed August 2011)
  57. Jaffrin, M.Y., Fenech, M., de Fremont, J.F., et al.: Continuous Monitoring of Plasma, Interstitial, and Intracellular Fluid Volumes in Dialyzed Patients by Bioimpedance and Hematocrit Measurements. ASAIO J. 48(3), 326–333 (2002)CrossRefGoogle Scholar
  58. Jaffrin, M.Y., Morel, H.: Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med. Eng. Phys. 30(10), 1257–1269 (2008)CrossRefGoogle Scholar
  59. Kaysen, G.A., Zhu, F., Sarkar, S., et al.: Estimation of total-body and limb muscle mass in hemodialysis patients by using multifrequency bioimpedance spectroscopy. Am. J. Clin. Nutr. 82(5), 988–995 (2005)Google Scholar
  60. Kennedy, J.: Multifrequency Bioimpedance Determination. US Patent 2006/0004300 A1 (2006)Google Scholar
  61. Kotanko, P., Levin, N.W., Zhu, F.: Current state of bioimpedance technologies in dialysis. Nephrol. Dial. Transplant. 23(3), 808–812 (2008)CrossRefGoogle Scholar
  62. Kushner, R.F., Schoeller, D.A.: Estimation of total body water by bioelectrical impedance analysis. Am. J. Clin. Nutr. 44(3), 417–424 (1986)Google Scholar
  63. Kyle, U.G., Genton, L., Karsegard, L., et al.: Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition 17(3), 248–253 (2001)CrossRefGoogle Scholar
  64. Kyle, U.G., Nicod, L., Raguso, C., et al.: Prevalence of low fat-free mass index and high and very high body fat mass index following lung transplantation. Acta Diabetol. 40(suppl. 1), S258–S260 (2003)CrossRefGoogle Scholar
  65. Kyle, U.G., Bosaeus, I., Antonio, D.D., et al.: Bioelectrical impedance analysis—part I: review of principles and methods. Clinical Nutrition 23, 1226–1243 (2004a)CrossRefGoogle Scholar
  66. Kyle, U.G., Bosaeus, I., De Lorenzo, A.D., et al.: Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin. Nutr. 23(6), 1430–1453 (2004b)CrossRefGoogle Scholar
  67. Kyle, U.G., Morabia, A., Schutz, Y., et al.: Sedentarism Affects Body Fat Mass Index and Fat-Free Mass Index in Adults Aged 18 to 98 Years. Nutrition 20(30), 255–260 (2004c)CrossRefGoogle Scholar
  68. Kubiczek, W.G., Karnegis, J.N., Patterson, R.P., et al.: Development and evaluation of an impedance cardiac output system. Aerospace Med. 37(12), 1208–1212 (1966)Google Scholar
  69. Lindley, E.J., Chamney, P.W., Wuepper, A., et al.: A comparison of methods for determining urea distribution volume for routine use in on-line monitoring of haemodialysis adequacy. Nephrol. Dial. Transplant. 24(1), 211–216 (2009)CrossRefGoogle Scholar
  70. Lohman, T.G., Houtkooper, L.B., Going, S.B.: Body fat measurement goes hi-tech: not all are created equal. ACSM’s Health Fitness J. 1, 30–35 (1997)Google Scholar
  71. Lorenzo, A., Andreoli, A., Matthie, J., et al.: Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J. Appl. Physiol. 82(5), 1542–1558 (1997)Google Scholar
  72. Lowrie, E.G., Teehan, B.P.: Principles of prescribing dialysis therapy: Implementing recommendation from the National Co-operative Dialysis Study. Kidney Int. 23(13), S113–S122 (1983)Google Scholar
  73. Machek, P., Jirka, T., Moissl, U., et al.: Optimal fluid status assessed with bioimpedance spectroscopy reduces IMES and hospitalisation in hemodialysis patients. NDT Plus 1(2), ii322–ii322 (2008)Google Scholar
  74. Matteucci, L.: Sur un phénomène physiologique produit par les muscles en conctraction. Ann. Chim. Et. Phys. 6, 339 (1842)Google Scholar
  75. Matthie, J.R., Withers, P.O., Van Loan, M.D., Mayclin, P.L.: Development of commercial complex bio-impedance spectroscopic system for determining intracellular and extracellular water volumes. In: Proc. of the 8th Int. Conf. on Electrical Bio-Impedance, pp. 203–205 (1992)Google Scholar
  76. Matthie, J.R.: Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopy. J. Appl. Physiol. 99(2), 780–781 (2005)CrossRefGoogle Scholar
  77. Medrano, G., Eitner, F., Floege, J.Ü., et al.: A Novel Bioimpedance Technique to Monitor Fluid Volume State During Hemodialysis Treatment. ASAIO J. 56(3), 215–220 (2010)CrossRefGoogle Scholar
  78. Min, M.M., Kink, A., Land, R., et al.: Modification of Pulse Wave Signals in Electrical Bioimpedance Analyzers for Implantable Medical Devices. In: Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, vol. 3, pp. 2263–2266 (2004)Google Scholar
  79. Moissl, U.M., Wabel, P., Chamney, P.W., et al.: Body fluid volume determination via body composition spectroscopy in health and disease. Physiol. Meas. 27(9), 921–933 (2006)CrossRefGoogle Scholar
  80. Naiman, N., Cheung, A.K., Goldfarb-Rumyantzev, A.S.: Familiality of cardiovascular mortality in end-stage renal disease patients. Am. J. Nephrol. 29(3), 237–243 (2009)CrossRefGoogle Scholar
  81. Nescolarde, L., Piccoli, A., Román, A., et al.: Bioelectrical impedance vector analysis in haemodialysis patients: relation between oedema and mortality. Physiol. Meas. 25(5), 1271–1280 (2004)CrossRefGoogle Scholar
  82. Nescolarde, L., Doñate, T., Piccoli, A., et al.: Comparison of segmental with whole-body impedance measurements in peritoneal dialysis patients. Med. Eng. Phys. 30(7), 817–824 (2008)CrossRefGoogle Scholar
  83. Neves, C.E.B., Souza, M.N.: A Comparison Between Impedance Measufled by a Commercial Analyzer and Your Value Adjusted by a Theoretical Model in Body Composition Evaluation. In: Proceedings of the 23rd Annual EMBS International Conference, vol. 4, pp. 3388–3391 (2001)Google Scholar
  84. NIH: National Institutes of Health, Bioelectrical Impedance Analysis in Body Composition Measurement. In: Technology Assessment Conference Statement, vol. (11-12), pp. 749–762 (1994)Google Scholar
  85. Nyboer, J.: Electrical Impedance Plethysmography: A Physical and Physiologic Approach to Peripheral Vascular Study. Circulation 2(6), 811–821 (1950)CrossRefGoogle Scholar
  86. Nobili, L.: Ueber einen neuen Galvanometer. J. Chem. und Physik. 45, 249–254 (1825)Google Scholar
  87. Pandey, V.K., Pandey, P.C.: Wavelet Based Cancellation of Respiratory Artifacts in Impedance Cardiography. In: 15th Int. Conf. on Digital Signal Processing, pp. 191–194 (2007)Google Scholar
  88. Passauer, J., Petrov, H., Schleser, A., et al.: Evaluation of clinical dry weight assessment in haemodialysis patients using bioimpedance spectroscopy: a cross-sectional study. Nephrol. Dial. Transplant. 25(2), 545–551 (2009)CrossRefGoogle Scholar
  89. Pastan, S., Gassensmith, C.: Total body water measured by bioelectrical impedance in patients after hemodialysis: comparison with urea kinetics. ASAIO J. 38(3), M186–M189 (1992)CrossRefGoogle Scholar
  90. Patterson, R.: Body fluid determinations using multiple impedance measurements. IEEE Eng. Med. Biol. Soc. Mag. 8(1), 16–18 (1989)CrossRefGoogle Scholar
  91. Piacentini, N., Demarchi, D., Civera, P., et al.: Blood cell counting by means of impedance measurements in a microsystem device. In: 30th Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 4824–4827 (2008)Google Scholar
  92. Piccoli, A., Rossi, B., Pillon, L., et al.: A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int. 46(2), 534–539 (1994)CrossRefGoogle Scholar
  93. Piccoli, A., Piazza, P., Noventa, D., et al.: A new method for monitoring hydration at high altitude by bioimpedance analysis. Med. Sci. Sports Exerc. 28(12), 1517 (1996)CrossRefGoogle Scholar
  94. Piccoli, A., Nescolarde, L.D., Rosell, J.: Análisis convencional y vectorial de bioimpedancia en la práctica clínica. Nefrología 12(3), 228–238 (2002a)Google Scholar
  95. Piccoli, A., Pillon, L., Dumler, F.: Impedance Vector Distribution by Sex, Race, Body Mass Index, and Age in the United States: Standard Reference Intervals as Bivariate Z Scores. Nutrition 18(2), 153–167 (2002b)CrossRefGoogle Scholar
  96. Prakash, S., Reddan, D., Heidenheim, A.P., et al.: Central, Peripheral, and Other Blood Volume Changes During Hemodialysis. ASAIO J. 48(4), 379–382 (2002)CrossRefGoogle Scholar
  97. Rjlsystems (2011), http://www.rjlsystems.com/ (accessed August 2011)
  98. Rocco, M.V., Yan, G., Heyka, R.J., et al.: Risk factors for hypertension in chronic hemodialysis patients: baseline data from the HEMO study. Am. J. Nephrol. 21(4), 280–288 (2001)CrossRefGoogle Scholar
  99. Salter, D.C.: Quantifying skin disease and healing in vivo using electrical impedance measurements. In: Rolfe, P. (ed.) Non-invasive Physiological Measurements, vol. 1, pp. 21–68. Academic Press, London (1979)Google Scholar
  100. Schutz, Y., Kyle, U.U.G., Pichard, C.: Fat-free mass index and fat mass index percentiles in Caucasians aged 18 – 98 y. Int. J. Obes. Relat. Metab. Disord. 26(7), 953–960 (2002)CrossRefGoogle Scholar
  101. Sergi, G., Bussolotto, M., Perini, P., et al.: Accuracy of bioelectrical impedance analysis in estimation of extracellular spaces in healthy subjects and in fluid retention. Ann. Nutr. Metab. 38(3), 158–165 (1994)CrossRefGoogle Scholar
  102. Shulman, T., Heidenheim, A.P., Kianfar, C., et al.: Preserving Central Blood Volume: Changes in Body Fluid Compartments During Hemodialysis. ASAIO J. 47(6), 615–618 (2001)CrossRefGoogle Scholar
  103. Songer, J.: Tissue Ischemia Monitoring Using Impedance Spectroscopy: Clinical Evaluation. M.Sc. Worcester Polytechnic Institute (2001)Google Scholar
  104. Stolarczyk, L.M., Heyward, V.H., Hicks, V.L., et al.: Predictive accuracy of bioelectrical impedance in estimating body composition of Native American women. Am. J. Clin. Nutr. 59(5), 964–970 (1994)Google Scholar
  105. Sun, S.S., Chumlea, W.C., Heymsfield, S.B., et al.: Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am. J. Clin. Nutr. 77(2), 331–340 (2003)Google Scholar
  106. Swatowski, A., Wizemann, V., Zaluska, W., et al.: Thoracic Impedance Measurements During Orthostatic Change Test and During Hemodialysis in Hemodialyzed Patients. ASAIO J. 50(6), 581–585 (2004)CrossRefGoogle Scholar
  107. Thommasset, A.: Bio-electrical properties of tissue impedance measurements. Lyon Med. 209, 1325–1352 (1963)Google Scholar
  108. Trebbels, D., Hradetzky, D., Zengerle, R., et al.: Capacitive on-line hematocrit sensor design based on impedance spectroscopy for use in hemodialysis machines. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 1208–1211 (2009)Google Scholar
  109. Tura, A., Maran, A., Pacini, G.: Non-invasive glucose monitoring: Assessment of technologies and devices according to quantitative criteria. Diabetes Res. Clin. Pract. 77(1), 16–40 (2007)CrossRefGoogle Scholar
  110. Valhalla web site, http://www.valhallascientific.com/ (accessed August 2011)
  111. Van Loan, M.D., Withers, P., Matthie, J., et al.: Use of bioimpedance spectroscopy to determine extracellular fluid, intracellular fluid, total body water and fat-free mass. In: Ellis, K.J., Eastman, J.D. (eds.) Human Body Composition: in Vivo Methods, Models and Assessment, vol. 60, pp. 67–70. Plenum, New York (1993)Google Scholar
  112. Wabel, P., Moissl, U., Chamney, P., et al.: Towards improved cardiovascular management: the necessity of combining blood pressure and fluid overload. Nephrol. Dial. Transplant. 23, 2965–2971 (2008)CrossRefGoogle Scholar
  113. Wabel, P., Chamney, P., Moissl, U., et al.: Importance of Whole-Body Bioimpedance Spectroscopy for the Management of Fluid Balance. Blood Purif. 27(1), 75–80 (2009)CrossRefGoogle Scholar
  114. Wang, J.J., Hu, W.C., Kao, T., et al.: On Measuring the Changes in Stroke Volume from a Peripheral Artery by Means of Electrical Impedance Plethysmography. In: The 2nd International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2008, Shanghai, May 16-18, pp. 1409–1412 (2008)Google Scholar
  115. Watson, P.E., Watson, I.D., Batt, R.D.: Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am. J. Clin. Nutr. 33(1), 27–39 (1980)Google Scholar
  116. Webster, J.G.: Medical Instrumentation: Application and Design, 4th edn. John Wiley & Sons, New York (2009)Google Scholar
  117. WHO web site, http://www.who.int/en/ (accessed December 2010)
  118. Wizemann, V., Wabel, P., Chamney, P., et al.: The mortality risk of overhydration in haemodialysis patients. Nephrol. Dial. Transplant. 24(5), 1574–1579 (2009)CrossRefGoogle Scholar
  119. Woodrow, G., Oldroyd, B., Turney, J.H., et al.: Measurement of total body water by bioelectrical impedance in chronic renal failure. Eur. J. of Clin. Nutr. 50(10), 676–681 (1996)Google Scholar
  120. Wuepper, A., Tattersall, J., Kraemer, M.: Determination of urea distribution volume for Kt/V assessed by conductivity monitoring. Kidney Int. 64(6), 2262–2271 (2003)CrossRefGoogle Scholar
  121. Xitron web site, http://www.xitrontech.com/ (accessed August 2011)
  122. Yang, Y., Wang, J.: Tetrapolar Method for Complex Bioimpedance Measurement: Theoretical Analysis and Circuit Realization. In: Proc. of the 2005 IEEE Engineering in Medicine and Biology: 27th Annual Conference, Shanghai, vol. 6, pp. 6605–6607 (2005)Google Scholar
  123. Zheng, S., Nandra, M.S., Chong, Y.T.: Human Blood Cell Sensing with Platinum Black Electroplated Impedance Sensor. In: 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2007, January 16-19, pp. 520–523 (2007)Google Scholar
  124. Zhou, Y.L., Liu, J., Sun, F.: Calf bioimpedance ratio improves dry weight assessment and blood pressure control in hemodialysis patients. Am. J. Nephrol. 32(2), 109–116 (2010)CrossRefGoogle Scholar
  125. Zhu, F., Kuhlmann, M.K., Kaysen, G.A.: Segment-specific resistivity improves body fluid volume estimates from bioimpedance spectroscopy in hemodialysis patients. J. Appl. Physiol. 100(2), 717–724 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Laura M. Roa
    • 1
  • David Naranjo
    • 1
  • Javier Reina-Tosina
    • 2
  • Alfonso Lara
    • 1
  • José A. Milán
    • 1
  • Miguel A. Estudillo
    • 1
  • J. Sergio Oliva
    • 1
  1. 1.Biomedical Engineering GroupUniversity of Sevilla, ESISevilleSpain
  2. 2.Network Center of Biomedical Research in BioengineeringBiomaterials and Nanomedicine (CIBER-BBN)MalagaSpain

Personalised recommendations