Double Pool Urea Kinetic Modeling

  • Ahmad Taher Azar
  • Masatomo Yashiro
  • Daniel Schneditz
  • Laura M. Roa
Part of the Studies in Computational Intelligence book series (SCI, volume 404)

Abstract

Urea kinetic modelling (UKM) has been generally accepted as a method for quantifying hemodialysis (HD) treatment. During hemodialysis, reduction in the urea concentration in the intracellular fluid (ICF) compartment will lag behind that in the extra cellular fluid (ECF) compartment, and following the end of dialysis, a ”rebound” in the blood level of urea will occur where it continues to rise due to diffusion of urea from the ICF to ECF to establish an equilibrium state. Because of compartment effects, the dose of dialysis with regard to urea removal is significantly overestimated from immediate post-dialysis urea concentrations, because 30 to 60 min are required for concentration gradients to dissipate and for urea concentrations to equilibrate across body water spaces during the post-dialysis period. To avoid the delay of waiting for an equilibrated post-dialysis sample, it became necessary to describe and to quantitate effects causing the urea compartmentalization during dialysis; two-pool modeling approaches have been developed that more accurately reflect the amount of urea removed. This in turn gives more adequate measures not only of dialysis adequacy, but also of the protein catabolic rate, an important nutritional measure that is clinically monitored in dialysis patients. This chapter discusses the double pool urea kinetic models and regional blood flow models in order to understand the concept of urea rebound.

Keywords

Single pool urea kinetic models Double pool urea kinetic models Intracellular compartment Extracellular compartment Urea rebound Equilibrated urea concentration Equilibrated dialysis dose Kt/V Access recirculation Cardiopulmonary recirculation High-efficiency dialysis Regional blood flow model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson, F., Gibson, S., Barlee, V., Bosch, J.P.: Urea kinetic modeling at high urea clearances: Implications for clinical practice. Adv. Ren. Replace Ther. 1(1), 5–14 (1994)Google Scholar
  2. Alloatti, S., Molino, A., Manes, M., Bosticardo, G.M.: Urea rebound and effectively delivered dialysis dose. Nephrol. Dial. Transplant. 13(6), 25–30 (1998)CrossRefGoogle Scholar
  3. Azar, A.T.: Adaptive Neuro Fuzzy system as a novel approach for predicting post-dialysis urea rebound. International Journal of Intelligent Systems Technologies and Applications (IJISTA) 10(3), 302–330 (2011)CrossRefGoogle Scholar
  4. Azar, A.T., Wahba, K.M.: Artificial Neural Network for Prediction of Equilibrated Dialysis Dose without Intradialytic Sample. Saudi J. Kidney Dis. Transpl. 22(4), 705–711 (2011)Google Scholar
  5. Azar, A.T., Balas, V.E., Olariu, T.: Artificial Neural Network for Accurate Prediction of Post-Dialysis Urea Rebound (2010), doi:10.1109/SOFA.2010.5565606Google Scholar
  6. Beige, J., Sharma, A.M., Distler, A., et al.: Monitoring dialysis efficacy by comparing delivered and predicted Kt/V. Nephrol. Dial. Transplant. 14(3), 683–687 (1999)CrossRefGoogle Scholar
  7. Bhaskaran, S., Tobe, S., Saiphoo, C., et al.: Blood urea levels 30 minutes before the end of dialysis are equivalent to equilibrated blood urea. ASAIO J. 43(5), M759–M762 (1997)CrossRefGoogle Scholar
  8. Brahm, J.: Urea permeability of human red cells. J. Gen. Physiol. 82(1), 1–23 (1983)CrossRefGoogle Scholar
  9. Burgelman, M., Vanholder, R., Fostier, H., Ringoir, S.: Estimation of parameters in a two-pool urea kinetic model for hemodialysis. Med. Engl. Phys. 19(1), 69–76 (1997)CrossRefGoogle Scholar
  10. Canaud, B., Bosc, J.Y., Cabrol, L., et al.: Urea as a marker of adequacy in hemodialysis: lesson from in vivo urea dynamics monitoring. Kidney Int. suppl. 76, S28–S40 (2000)CrossRefGoogle Scholar
  11. Canaud, B., Bosc, J.Y., Leblanc, M., et al.: A simple and accurate method to determine equilibrated post-dialysis urea concentration. Kidney Int. 51(6), 2000–2005 (1997)CrossRefGoogle Scholar
  12. Cappello, A., Avanzolini, G., Chiari, L.: Estimation of parameters in a two-pool urea kinetic model for hemodialysis. Med. Eng. Phys. 20(4), 315–318 (1998)CrossRefGoogle Scholar
  13. Castro, M.C.M., Romao Jr., J.E., Marcondes, M.: Measurement of blood urea concentration during hemodialysis is not an accurate method to determine equilibrated post-dialysis urea concentration. Nephrol. Dial. Transplant. 16(9), 1814–1817 (2001)CrossRefGoogle Scholar
  14. Chirananthavat, T., Tungsanga, K., Eiam-Ong, S.: Accuracy of using 30-minute post-dialysis BUN to determine equilibrated Kt/V. J. Med. Assoc. Thai. 89(suppl. 2), 54–64 (2006)Google Scholar
  15. Daugirdas, J.T., Blake, P.G., Ing, T.S. (eds.): Handbook of Dialysis, 4th edn. Lippincott, Williams and Wilkins, Philadelphia (2007)Google Scholar
  16. Daugirdas, J.T., Greene, T., Depner, T.A., et al.: Factors that Affect Post-dialysis Rebound in Serum Urea Concentration, Including the Rate of Dialysis: Results from the HEMO Study. J. Am. Soc. Nephrol. 15(1), 194–203 (2004)CrossRefGoogle Scholar
  17. Daugirdas, J.T., Greene, T., Depner, T.A., et al.: Relationship between apparent (single-pool) and true (double-pool) urea distribution volume. Kidney Int. 56(5), 1928–1933 (1999)CrossRefGoogle Scholar
  18. Daugirdas, J.T., Depner, T.A., Gotch, F.A., et al.: Comparison of methods to predict equilibrated Kt/V in the HEMO Pilot Study. Kidney Int. 52(5), 1395–1405 (1997)CrossRefGoogle Scholar
  19. Daugirdas, J.T., Schneditz, D., Leehey, D.J.: Effect of access recirculation on the modeled urea distribution volume. Am. J. Kidney Dis. 27(4), 512–518 (1996a)CrossRefGoogle Scholar
  20. Daugirdas, J.T., Burke, M.S., Balter, P., et al.: Screening for extreme postdialysis urea rebound using the Smye method: patients with access recirculation identified when a slow flow method is not used to draw the postdialysis blood. Am. J. Kidney Dis. 28(5), 727–731 (1996b)CrossRefGoogle Scholar
  21. Daugirdas, J.T., Schneditz, D.: Overestimation of hemodialysis dose depends on dialysis efficiency by regional blood flow but not by conventional two pool urea kinetic analysis. ASAIO J. 41(3), M719–M724 (1995)CrossRefGoogle Scholar
  22. Daugirdas, J.T.: Estimation of equilibrated Kt/V using the unequilibrated post dialysis BUN. Semin. Dial. 8(5), 283–284 (1995)CrossRefGoogle Scholar
  23. Daugirdas, J.T.: Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J. Am. Soc. Nephrol. 4(5), 1205–1213 (1993)Google Scholar
  24. Dedrick, R.L., Bischoff, K.B.: Pharmacokinetics in applications of the artificial kidney. In: Chem. Eng. Prog. Symp. Ser., vol. 64, pp. 32–44 (1968)Google Scholar
  25. Dedrick, R.L., Gabelnick, H.L., Bischoff, K.B.: Kinetics of urea distribution. In: Proc. Ann. Conf. Eng. Med. Biol., vol. 10, 36.1 (1968)Google Scholar
  26. Depner, T.A., Rizwan, S., Cheer, A.Y., et al.: High venous urea concentrations in the opposite arm: A consequence of hemodialysis-induced compartment disequilibrium. ASAIO J. 37(3), 141–143 (1991)Google Scholar
  27. Depner, T.A.: Multicompartment models. In: Depner, T.A. (ed.) Pre-scribing Hemodialysis: A Guide to Urea Modeling, pp. 91–126. Kluwer Academic, Dordrecht (1991)Google Scholar
  28. Duchesne, R., Klein, J.D., Velotta, J.B., et al.: UT-A urea transporter protein in heart: Increased abundance during uremia, hypertension, and heart failure. Circ. Res. 89(2), 139–145 (2001)CrossRefGoogle Scholar
  29. Evans, J.H., Smye, S.W., Brocklebank, J.T.: Mathematical modelling of haemodialysis in children. Pediatr. Nephrol. 6(4), 349–353 (1992)CrossRefGoogle Scholar
  30. Fernandez, E.A., Valtuille, R., Willshaw, P., Perazzo, C.A.: Using Artificial Intelligence to Predict the Equilibrated Post-dialysis Blood Urea Concentration. Blood Purif. 19(3), 271–285 (2001)CrossRefGoogle Scholar
  31. Flanigan, M.J., Fangman, J., Lim, V.S.: Quantitating hemodialysis: A comparison of three kinetic models. Am. J. Kidney Dis. 17(3), 295–302 (1991)Google Scholar
  32. Garred, L.J., Canaud, B., Bosc, J.Y., Tetta, C.: Urea rebound and delivered Kt/V determination with a continuous urea sensor. Nephrol. Dial. Transplant. 12(3), 535–542 (1997)CrossRefGoogle Scholar
  33. George, T.O., Priester-Coary, A., Dunea, G., et al.: Cardiac output and urea kinetics in dialysis patients: Evidence supporting the regional blood flow model. Kidney Int. 50(4), 1273–1277 (1996)CrossRefGoogle Scholar
  34. Goldstein, S.L., Brewer, E.D.: Logarithmic extrapolation of a 15- minute postdialysis BUN to predict equilibrated BUN and calculate double-pool Kt/V in the pediatric hemodialysis population. Am. J. Kidney Dis. 36(1), 98–104 (2000)CrossRefGoogle Scholar
  35. Gotch, F.A., Keen, M.L.: Kinetic modeling in hemodialysis. In: Nissenson, A.R., Fine, R.N. (eds.) Clinical Dialysis, 4th edn., pp. 153–202. McGrraw-Hill, New York (2005)Google Scholar
  36. Grandi, F., Avanzolini, G., Cappello, A.: Analytic solution of the variable-volume double-pool urea kinetics model applied to parameter estimation in hemodialysis. Comput. Biol. Med. 25(6), 505–518 (1995)CrossRefGoogle Scholar
  37. Guh, J., Yang, C., Yang, J., Chen, L., Lai, Y.: Prediction of equilibrated postdialysis BUN by an artificial neural network in high-efficiency hemodialysis. Am. J. Kidney Dis. 31(4), 638–646 (1998)CrossRefGoogle Scholar
  38. Goldau, R.: Clinical Evaluation of Novel Methods to Determine Dialysis Parameters Using Conductivity Cells. Ph. D. Würzburg University (2002)Google Scholar
  39. Heineken, F.G., Evans, M.C., Keen, M.L., Gotch, F.A.: Intercompartmental fluid shifts in hemodialysis patients. Biotechnol. Progr. 3(2), 69–73 (1987)CrossRefGoogle Scholar
  40. Jean, G., Chazot, C., Charra, B., et al.: Is post-dialysis urea rebound significant with long slow hemodialysis? Blood Purif. 16(4), 187–196 (1998)CrossRefGoogle Scholar
  41. Jean, G., Charra, B., Chazot, C., Laurent, G.: Quest for post-dialysis urea rebound-equilibrated Kt/V with only intradialytic urea samples. Kidney Int. 56(3), 1149–1153 (1999)CrossRefGoogle Scholar
  42. Kaufman, A.M., Schneditz, D., Smye, S., et al.: Solute disequilibrium and multicompartment modeling. Adv. Ren. Replace Ther. 2(4), 319–329 (1995)Google Scholar
  43. Kooman, J.P., van der Sande, F.M., Leunissen, K.M.: Kt/V: Finding the Tree within the Woods. Nephrol. Dial. Transplant. 16(9), 1749–1752 (2001)CrossRefGoogle Scholar
  44. Leblanc, M., Charbonneau, R., Lalumiere, G., et al.: Postdialysis Urea Rebound: Determinants and Influence on Dialysis Delivery in Chronic Hemodialysis Patients. Am. J. Kidney Dis. 27(2), 253–261 (1996)CrossRefGoogle Scholar
  45. Leypoldt, J.K., Jaber, B.L., Zimmerman, D.L.: Predicting treatment dose for novel therapies using urea standard Kt/V. Semin. Dial. 17(2), 142–145 (2004)CrossRefGoogle Scholar
  46. Maduell, F., Garcia-Valdecasas, J., Garcia, H., et al.: Urea reduction ratio considering urea rebound. Nephron 78(2), 143–147 (1998)CrossRefGoogle Scholar
  47. Maduell, F., Garcia-Valdecasas, J., Garcia, H., et al.: Validation of different methods to calculate KtV considering postdialysis rebound. Nephrol. Dial. Transplant. 12(9), 1928–1933 (1997)CrossRefGoogle Scholar
  48. Malovrh, M.: Non-invasive evaluation of vessels by duplex sonography prior to construction of arteriovenous fistula for haemodialysis. Nephrol. Dial. Transplant. 13(1), 125–129 (1998)CrossRefGoogle Scholar
  49. Matthews, D.E., Downey, R.S.: Measurement of urea kinetics in humans: a validation of stable isotope tracer methods. Am. J. Physiol. 246(6 Pt 1), E519–E527 (1984)Google Scholar
  50. Metry, G.S., Attman, P.O., Lönnroth, P., et al.: Urea kinetics during hemodialysis measured by microdialysis–a novel technique. Kidney Int. 44(3), 622–629 (1993)CrossRefGoogle Scholar
  51. NKF-K/DOQI: Clinical Practice Guidelines and Clinical Practice Recommendations, Updates: Hemodialysis Adequacy, Peritoneal Dialysis Adequacy, Vascular Access. Am. J. Kidney Dis. 48(suppl. 1), S28–S58 (2006)Google Scholar
  52. NKF-K/DOQI: Clinical practice guidelines for hemodialysis adequacy: Update. Am. J. Kidney. Dis. 37(1 suppl. 1), S7–S64 (2001)Google Scholar
  53. Pedrini, L.A., Zereik, S., Rasmy, S.: Causes, kinetics and clinical implications of post-hemodialysis urea rebound. Kidney Int. 34(6), 817–824 (1988)CrossRefGoogle Scholar
  54. Pflederer, B.R., Torrey, C., Priester-Coary, A., Lau, A.H., Daugirdas, J.T.: Estimating equilibrated Kt/V from an intradialytic sample: effects of access and cardiopulmonary recirculations. Kidney Int. 48(3), 832–837 (1995)CrossRefGoogle Scholar
  55. Renkin, E.M.: Effects of blood flow on diffusion kinetics in isolated, perfused hindlegs of cats; a double circulation hypothesis. Am. J. Physiol. 183(1), 125–136 (1955)Google Scholar
  56. Ronco, C., Brendolan, A., Crepaldi, C., et al.: Ultrafiltrations-rates and dialyse hypotension. Dialyse J. 40, 8–15 (1992)Google Scholar
  57. Sargent, J.A., Gotch, F.A.: Principles and biophysics of dialysis. In: Maher, J.F. (ed.) Replacement of Renal Function by Dialysis, 3rd edn., pp. 87–143. Kluwer Academic, Dordrecht (1989)CrossRefGoogle Scholar
  58. Schneditz, D., Platzer, D., Daugirdas, J.T.: A diffusion-adjusted regional blood flow model to predict solute kinetics during haemodialysis. Nephrol. Dial. Transplant. 24(7), 2218–2224 (2009)CrossRefGoogle Scholar
  59. Schneditz, D., Daugirdas, J.T.: Compartment effects in hemodialysis. Semin. Dial. 14(4), 271–277 (2001)CrossRefGoogle Scholar
  60. Schneditz, D., Fariyike, B., Osheroff, R., Levin, N.W.: Is intercompartmental urea clearance during hemodialysis a perfusion term? A comparison of two pool urea kinetic models. J. Am. Soc. Nephrol. 6(5), 1360–1370 (1995)Google Scholar
  61. Schneditz, D., Daugirdas, J.T.: Formal analytical solution to a regional blood flow and diffusion based urea kinetic model. ASAIO J. 40(3), M667–M673 (1994)CrossRefGoogle Scholar
  62. Schneditz, D., VanStone, J., Daugirdas, J.T.: A regional blood circulation alternative to in-series two compartment urea kinetic modeling. ASAIO J. 39(3), M573–M577 (1993)CrossRefGoogle Scholar
  63. Schneditz, D., Roob, J., Oswald, M., et al.: Nature and rate of vascular refilling during hemodialysis and ultrafiltration. Kidney Int. 42(6), 1425–1433 (1992a)CrossRefGoogle Scholar
  64. Schneditz, D., Kaufman, A.M., Polaschegg, H.D., et al.: Cardiopulmonary recirculation during hemodialysis. Kidney Int. 42(6), 1450–1456 (1992b)CrossRefGoogle Scholar
  65. Sharma, A., Espinosa, P., Bell, L., et al.: Multicompartment Urea Kinetics In Well-Dialyzed Children. Kidney Int. 58(5), 2138–2146 (2000)CrossRefGoogle Scholar
  66. Sharma, A.K.: Reassessing hemodialysis adequacy in children: The case for more. Pediatr. Nephrol. 16(4), 383–390 (2001)CrossRefGoogle Scholar
  67. Sherman, R.A., Kapoian, T.: Recirculation, urea disequilibrium, and dialysis efficiency: Peripheral arteriovenous versus central venovenous vascular access. Am. J. Kidney Dis. 29(4), 479–489 (1997)CrossRefGoogle Scholar
  68. Smith, C.P.: Mammalian urea transporters. Exp. Physiol. 94(2), 180–185 (2009)CrossRefGoogle Scholar
  69. Smye, S.W., Tattersall, J.E., Will, E.J.: Modeling the postdialysis re-bound: the reconciliation of current formulas. ASAIO J. 45(6), 562–567 (1999)CrossRefGoogle Scholar
  70. Smye, S.W., Lindley, E.J., Will, E.J.: Simulating the effect of exercise on urea clearance in hemodialysis. J. Am. Soc. Nephrol. 9(1), 128–132 (1998)Google Scholar
  71. Smye, S.W., Will, E.J.: A mathematical analysis of a two-compartment model of urea kinetics. Phys. Med. Biol. 40(12), 2005–2014 (1995)CrossRefGoogle Scholar
  72. Smye, S.W., Dunderdale, E., Brownridge, G., Will, E.: Estimation of treatment dose in high-efficiency haemodialysis. Nephron 67(1), 24–29 (1994)CrossRefGoogle Scholar
  73. Smye, S.W., Evans, J.H., Will, E., Brocklebank, J.T.: Paediatric haemodialysis: Estimation of treatment efficiency in the presence of urea rebound. Clin. Phys. Physiol. Meas. 13(1), 51–62 (1992)CrossRefGoogle Scholar
  74. Spiegel, D.M., Baker, P.L., Babcock, S., et al.: Hemodialysis urea rebound: the effect of increasing dialysis efficiency. Am. J. Kidney Dis. 25(1), 26–29 (1995)CrossRefGoogle Scholar
  75. Star, R., Hootkins, J., Thompson, J., et al.: Variability and stability of two pool urea mass transfer coefficient. J. Am. Soc. Nephrol. 3, 395A (1992)Google Scholar
  76. Tattersall, J., Farrington, K., Bowser, M., et al.: Underdialysis caused by reliance on single pool urea kinetic modeling. J. Am. Soc. Nephrol. 3, 398 (1996a)Google Scholar
  77. Tattersall, J.E., DeTakats, D., Chamney, P., et al.: The post-haemodialysis rebound: predicting and quantifying its effect on KtV. Kidney Int. 50(6), 2094–2102 (1996b)CrossRefGoogle Scholar
  78. Tattersall, J.E., Chamney, P., Aldridge, C., Greenwood, R.N.: Recirculation and the post-dialysis rebound. Nephrol. Dial. Transplant. 11(suppl. 2), 75–80 (1996c)CrossRefGoogle Scholar
  79. Teichholz, L.E., Kreulen, T., Herman, M.V., et al.: Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am. J. Cardiol. 37(1), 7–11 (1976)CrossRefGoogle Scholar
  80. Timmer, R.T., Klein, J.D., Bagnasco, S.M., et al.: Localization of the urea transporter UT-B protein in human and rat erythrocytes and tissues. Am. J. Physiol. Cell Physiol. 281(4), C1318–C1325 (2001)Google Scholar
  81. Yamada, T., Hiraga, S., Akiba, T., et al.: Analysis of Urea Nitrogen and Creatinine Kinetics in Hemodialysis: Comparison of a Variable-Volume Two-Compartment Model with a Regional Blood Flow Model and Investigation of a Appropriate Solute Kinetics Model for Clinical Application. Blood Purif. 18(1), 18–29 (2000)CrossRefGoogle Scholar
  82. Yashiro, M., Watanabe, H., Muso, E.: Simulation of post-dialysis urea rebound using regional flow model. Clin. Exp. Nephrol. 8(2), 139–145 (2004)CrossRefGoogle Scholar
  83. Vanholder, R., Burgelman, M., De Smet, R., et al.: Two-Pool versus Single-Pool Models in the Determination of Urea Kinetic Parameters. Blood Purif. 14(6), 437–450 (1996)CrossRefGoogle Scholar
  84. Wagner, L., Klein, J.D., Sands, J.M., Baylis, C.: Urea transporters are distributed in endothelial cells and mediate inhibition of L-arginine transport. Am. J. Physiol. Renal. Physiol. 283(3), F578–F582 (2002)Google Scholar
  85. Zhao, D., Sonawane, N.D., Levin, M.H., Yang, B.: Comparative transport efficiencies of urea analogues through urea transporter UT-B. Biochim. Biophys. Acta 1768(7), 1815–1821 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ahmad Taher Azar
    • 1
  • Masatomo Yashiro
    • 2
  • Daniel Schneditz
    • 3
  • Laura M. Roa
    • 4
  1. 1.Computer and Software Engineering Department Faculty of EngineeringMisr University for Science & Technology (MUST)6th of October CityEgypt
  2. 2.Division of NephrologyKyoto City HospitalKyotoJapan
  3. 3.Institute of PhysiologyMedical University of GrazGrazAustria
  4. 4.Biomedical Engineering GroupUniversity of Sevilla, ESISevilleSpain

Personalised recommendations