Single Pool Urea Kinetic Modeling

  • Alicja E. Grzegorzewska
  • Ahmad Taher Azar
  • Laura M. Roa
  • J. Sergio Oliva
  • José A. Milán
  • Alfonso Palma
Part of the Studies in Computational Intelligence book series (SCI, volume 404)

Abstract

Hemodialysis (HD) is one of the treatments included in what is called the Renal Replacement Therapy (RRT). As every treatment, hemodialysis has its dose. How quantify this hemodialysis dosage was one of the results of the National Dialysis Cooperative Study (NCDS) published in 1983. A formula based in the Urea Kinetic Modeling (UKM) was developed. This formula was the dimensionless equation Kt/V where K is the dialyzer clearance rate of urea (or volume of plasma cleared), t is the duration of the dialysis session and V is the urea distribution volume (the total body water volume). Because of the complexity of urea kinetic modeling, a number of shortcut methods of estimating Kt/V have been proposed. The aims of this chapter are twofold: 1) to give an overview of single pool urea kinetic modeling and 2) to introduce concepts and methods needed to manage the approaches available to estimate the single pool Kt/V.

Keywords

Diffusion Convection Hemodialysis adequacy Kt/V Total body water Ultrafiltration Urea clearance Urea distribution volume Urea generation rate Urea kinetics Urea rebound Urea reduction rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acchiardo, S.R., Hatten, K.W., Ruvinsky, M.J., et al.: Inadequate dialysis increases gross mortality rate. ASAIO J. 38(3), M282–M285 (1992)Google Scholar
  2. 2.
    Azar, A.T.: Estimation of accurate and new method for hemodialysis dose calculation. Clinical Medicine: Urology 1, 15–21 (2008)Google Scholar
  3. 3.
    Babb, A.L., Popovich, R.P., Christopher, T.G., et al.: The genesis of the square meter-hour hypothesis. Trans. Am. Soc. Artif. Intern. Organs 17, 81–91 (1971)Google Scholar
  4. 4.
    Barth, R.H.: Direct calculation of Kt/V: A simplified approach to monitoring of hemodialysis. Nephron 50(3), 191–195 (1988)Google Scholar
  5. 5.
    Basile, C., Casino, F., Lopez, T.: Percent reduction in blood urea concentration during dialysis estimates KtV in a simple and accurate way. Am. J. Kidney Dis. 15(1), 40–45 (1990)Google Scholar
  6. 6.
    Basile, C., Vernaglione, L., Lomonte, C., et al.: Comparison of alternative methods for scaling dialysis dose. Nephrol. Dial. Transplant. 25(4), 1232–1239 (2010)Google Scholar
  7. 7.
    Blake, P., Daugirdas, J.: Quantification and prescription, general principles. In: Jacobs, C., Kjellstrand, K.M., Koch, K.M., Winchester, J.F. (eds.) Replacement of Renal Function by Dialysis, pp. 619–656. Kluver Academic Publishers, Dordrecht (1996)Google Scholar
  8. 8.
    Bland, J.M., Altman, D.G.: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476), 307–310 (1986)Google Scholar
  9. 9.
    Bloembergen, W.E., Stannard, D.C., Port, F.K., et al.: Relationship of dose of haemodialysis and cause-specific mortality. Kidney Int. 50(2), 557–565 (1996)Google Scholar
  10. 10.
    Borah, M.F., Schoenfeld, P.Y., Gotch, F.A., et al.: Nitrogen Balance during Intermittent Dialysis Therapy of Uremia. Kidney Int. 14(5), 491–500 (1978)Google Scholar
  11. 11.
    Calzavara, P., Vianello, A., Da Porto, A., et al.: Comparison Between Three Mathematical Models of Kt/V. Int. J. Artif. Organs 11(2), 107–110 (1988)Google Scholar
  12. 12.
    Canadian Society of Nephrology (CSN) Clinical practice guidelines the delivery of haemodialysis. J. Am. Soc. Nephrol. 10, S306–S310 (1999)Google Scholar
  13. 13.
    Casino, F.G., Lopez, T.: The equivalent renal urea clearance. A new parameter to assess dialysis dose. Nephrol. Dial. Transplant. 11, 1574–1581 (1996)Google Scholar
  14. 14.
    Chertow, G.M., Owen, W.F., Lazarus, J.M., et al.: Exploring the reverse J-shaped curve between urea reduction ratio and mortality. Kidney Int. 56(5), 1872–1878 (1999)Google Scholar
  15. 15.
    Collins, A.J., Ma, J.Z., Umen, A., et al.: Urea index and other predictors of haemodialysis patient survival. Am. J. Kidney Dis. 23(2), 272–282 (1994)Google Scholar
  16. 16.
    Daugirdas, J.T., Blake, P.G., Ing, T.S. (eds.): Handbook of Dialysis, 4th edn. Lippincott, Williams and Wilkins, Philadelphia (2007)Google Scholar
  17. 17.
    Daugirdas, J.T.: The post:pre-dialysis plasma urea nitrogen ratio to estimate Kt/V and NPCR: Mathematical modeling. Int. J. Artif. Organs 12(7), 411–419 (1989a)Google Scholar
  18. 18.
    Daugirdas, J.T.: The post:pre-dialysis plasma urea nitrogen ratio to estimate Kt/V and NPCR: Validation. Int. J. Artif. Organs 12(7), 420–427 (1989b)Google Scholar
  19. 19.
    Daugirdas, J.T.: Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J. Am. Soc. Nephrol. 4(5), 1205–1213 (1993)Google Scholar
  20. 20.
    Daugirdas, J.T., Depner, T.A.: A nomogram approach to hemodialysis urea modeling. Am. J. Kidney Dis. 23(1), 33–40 (1994)Google Scholar
  21. 21.
    Daugirdas, J.T.: Simplified equations for monitoring Kt/V, PCRn, eKt/V, and ePCRn. Adv. Ren. Replace Ther. 2(4), 295–304 (1995)Google Scholar
  22. 22.
    Daugirdas, J.T., Depner, T.A., Greene, T., et al.: Surface-area normalized Kt/V: a method of rescaling dialysis dose to body surface area – implications for different-size patients by gender. Semin. Dial. 21(5), 415–421 (2008a)Google Scholar
  23. 23.
    Daugirdas, J.T., Levin, N.W., Kotanko, P., et al.: Comparison of proposed alternative methods for rescaling dialysis dose: resting energy expenditure, high metabolic rate organ mass, liver size, and body surface area. Semin. Dial. 21(5), 377–384 (2008b)Google Scholar
  24. 24.
    Daugirdas, J.T., Meyer, K., Greene, T., et al.: Scaling of measured glomerular filtration rate in kidney donor candidates by anthropometric estimates of body surface area, body water, metabolic rate, or liver size. Clin. Am. Soc. Nephrol. 4(10), 1575–1583 (2009)Google Scholar
  25. 25.
    De Oreo, P., Hamburger, R.: Urea reduction ratio is not a consistent predictor of Kt/V. J. Am. Soc. Nephrol. 6, 597 (1995)Google Scholar
  26. 26.
    Depner, T.A.: Prescribing Hemodialysis: A Guide to Urea Modeling, 2nd edn. Springer, Heidelberg (1990)Google Scholar
  27. 27.
    Depner, T.A.: History of dialysis quantitation. Semin. Dial. 12(suppl.1), S14–S19 (1999a)Google Scholar
  28. 28.
    Depner, T.A.: Why Daily hemodialysis is better: solute kinetics. Semin. Dial. 12(6), 462–471 (1999b)Google Scholar
  29. 29.
    Depner, T.A., Daugirdas, J.T.: Equations for normalized protein catabolic rate based on two-point modeling of hemodialysis urea kinetics. J. Am. Soc. Nephrol. 7, 780–785 (1996)Google Scholar
  30. 30.
    Depner, T.A.: Hemodialysis adequacy: Basic essentials and practical points for the nephrologist in training. Hemodialysis Int. 9(3), 241–254 (2005)Google Scholar
  31. 31.
    Deziel, C., Hirsch, D.J., Hoult, P.: The Canadian Society of Nephrology. Clinical practice guidelines the delivery of haemodialysis. J. Am. Soc. Nephrol. 10(suppl. 13), 306–310 (1999)Google Scholar
  32. 32.
    Dubois, D., Dubois, E.F.: A formula to estimate the approximate surface area if height and weight be known. Nutrition 5(5), 303–311 (1989)Google Scholar
  33. 33.
    Eknoyan, G., Beck, G.J., Cheung, A.K., et al.: Effect of dialysis dose and membrane flux in maintenance hemodialysis. N. Engl J. Med. 347(25), 2010–2019 (2002)Google Scholar
  34. 34.
    European Best Practice Guidelines (EBPG) for hemodialysis. section II: hemodialysis adequacy. Nephrol. Dial. Transplant. 17(suppl. 7), 16–31 (2002)Google Scholar
  35. 35.
    European Best Practice Guidelines (EBPG) on hemodialysis. Nephrol. Dial. Transplant. 22(supp. 2), ii16–ii21 (2007)Google Scholar
  36. 36.
    Garred, L.J., Barichello, D.L., Canaud, B., McCready, W.G.: Simple Equations For Protein Catabolic Rate Determination From Pre And Post Dialysis Blood Urea Nitrogen. ASAIO J. 41(4), 889–895 (1995)Google Scholar
  37. 37.
    Giovannetti, S., Maggiore, Q.: A low-nitrogen diet with proteins of high biological value for severe chronic uraemia. Lancet 1(7341), 1000–1003 (1964)Google Scholar
  38. 38.
    Gotch, F.A.: Kinetic modeling in hemodialysis. In: Nissenson, A.R., Fine, R.N., Gentile, D.E. (eds.) Clinical Dialysis, 3rd edn., pp. 156–189. Appleton & Lange, East Norwalk (1995)Google Scholar
  39. 39.
    Gotch, F.A.: The current place of urea kinetic modeling with respect to different dialysis modalities. Nephrol. Dial. Transplant. 13(suppl. 6), 10–14 (1998)Google Scholar
  40. 40.
    Gotch, F.A.: Kt/V is the best dialysis dose parameter. Blood Purif. 18(4), 276–285 (2000)Google Scholar
  41. 41.
    Gotch, F., Sargent, J.: A mechanistic analysis of the National Cooperative Dialysis Study (NCDS). Kidney Int. 28(3), 526–534 (1985)Google Scholar
  42. 42.
    Gotch, F., Sargent, J., Keen, M., et al.: Individualized quantified dialysis therapy of uremia. Proc. Clin. Dial. Transplant. Forum 4(4), 27–35 (1974)Google Scholar
  43. 43.
    Gotch, F.A.: Evolution of the Single-Pool Urea Kinetic Model. Semin. Dial. 14(4), 252–256 (2001)Google Scholar
  44. 44.
    Grzegorzewska, A.E., Banachowicz, W.: Comparisons of Kt/V evaluated using an online method and calculated from urea measurements in patients on intermittent hemodialysis. Hemodial Int. 10(suppl. 2), S5–S9 (2006)Google Scholar
  45. 45.
    Grzegorzewska, A.E., Banachowicz, W.: Evaluation of hemodialysis adequacy using online Kt/V and single-pool variable-volume urea Kt/V. Int. Urol. Nephrol. 40(3), 771–778 (2008)Google Scholar
  46. 46.
    Grzegorzewska, A.E., Banachowicz, W., Leander, M.: Results of improvement in adequacy of intermittent hemodialysis in uremic patients. Rocz. Akad. Med. Bialymst. 50, 314–318 (2005)Google Scholar
  47. 47.
    Hakim, R.M., Breyer, J., Ismail, N., et al.: Effects of dose of dialysis on morbidity and mortality. Am. J. Kidney Dis. 23(5), 661–669 (1994)Google Scholar
  48. 48.
    Harter, H.R.: Review of significant findings from the National Co-operative Dialysis Study and recommendations. Kidney Int. Suppl. 13, S107–S112 (1983)Google Scholar
  49. 49.
    Hauk, M., Kuhlmann, M.K., Riegel, W., et al.: In vivo effects of dialysate flow rate on KtV in maintenance haemodialysis patients. Am. J. Kidney Dis. 35(1), 105–111 (2000)Google Scholar
  50. 50.
    Haycock, G.B., Schwartz, G.J., Wisotsky, D.H.: Geometric method for measuring body surface area: a height-weight formula validated in infants, children and adults. J. Pediatr. 93(1), 62–66 (1978)Google Scholar
  51. 51.
    Health Care Financing Administration (HCFA), Core Indicators Project Initial Results, Opportunities to Improve Care for Adult In-Center Hemodialysis Patients. Baltimore, Department of Health and Human Services, Health Care Financing Administration, Health Standards and Quality, Bureau (1994)Google Scholar
  52. 52.
    Held, P.J., Port, F.K., Wolfe, R.A., et al.: The dose of haemodialysis and patient mortality. Kidney Int. 50(2), 550–556 (1996)Google Scholar
  53. 53.
    Hernandez-Herrera, G., Martin-Malo, A., Rodriguez, M., et al.: Assessment of the length of each hemodialysis session by online dialysate urea monitoring. Nephron 89(1), 37–42 (2001)Google Scholar
  54. 54.
    Ifudu, O., Feldman, J., Friedman, E.A.: The intensity of hemodialysis and the response to erythropoietin in patients with end-stage renal disease. N. Engl. J. Med. 334(7), 420–425 (1996)Google Scholar
  55. 55.
    Jely, G.K., Raja, R.M.: Simplified calculation of PCR and Kt/V. Abstr. In: 24th Annual JASN Meeting, p. 329 (1991)Google Scholar
  56. 56.
    Jindal, K.K., Goldstein, M.B.: Urea kinetic modelling in chronic hemodialysis: Benefits, problems, and practical solutions. Seminars in Dialysis 1, 82–85 (1988)Google Scholar
  57. 57.
    Jindal, K.K., Manuel, A., Goldstein, M.B.: Percent Reduction Of The Blood Urea Concentration During Dialysis (PRU), A Simple And Accurate Method To Estimate Kt/V urea. ASAIO Trans. 33(3), 286–288 (1978)Google Scholar
  58. 58.
    Jenkins, P.G.: The illogic of Kt/V. Kidney Int. 75, 337 (2009)Google Scholar
  59. 59.
    Kaufman, A.M., Schneditz, D., Smye, S., et al.: Solute disequilibrium and multicompartment modeling. Adv. Ren. Replace Ther. 2(4), 319–329 (1995)Google Scholar
  60. 60.
    Kerr, P.G., Argiles, A., Canaud, et al.: Accuracy of Kt/V estimations in high-flux haemodiafiltration using percent reduction of urea: incorporation of urea rebound. Nephrol. Dial. Transplant. 8(2), 149–153 (1993)Google Scholar
  61. 61.
    Kesheviah, P.R., Hanson, G.I., Berkseth, R.O., et al.: A Simplified Approach To Monitoring In Vivo Therapy Prescription. ASAIO Trans. 34(3), 620–622 (1988)Google Scholar
  62. 62.
    Keshaviah, P.: Urea kinetic and middle molecule approaches to assessing the adequacy of hemodialysis and CAPD. Kidney Int. 43(suppl. 40), S28–S38 (1993)Google Scholar
  63. 63.
    Kolff, W., Berk, H., Welle, N., et al.: The artificial kidney: a dialyzer with great area. Acta Med. Scand. 117, 121–134 (1944)Google Scholar
  64. 64.
    Kopple, J.D., Zhu, X., Lew, N.L., et al.: Body weight-for-height relationships predict mortality in maintenance hemodialysis patients. Kidney Int. 56(3), 1136–1148 (1999)Google Scholar
  65. 65.
    Kovacic, V., Roguljic, L., Jukic, I., et al.: Comparison of methods for hemodialysis dose calculation. Dial. Transplant. 32(4), 170–175 (2003)Google Scholar
  66. 66.
    Kupcinskas, R.: A Method for Optical Measurement of Urea in Effluent Hemodialysate. PhD. Worcester Polytechnic Institute (2000)Google Scholar
  67. 67.
    Laird, N.M., Berkey, C.S., Lowrie, E.G.: Modeling success or failure of dialysis therapy: the National Cooperative Dialysis Study. Kidney Int. 23(suppl. 13), 101–106 (1983)Google Scholar
  68. 68.
    Leypoldt, J.K., Cheung, A.K., Agodoa, L.Y., et al.: Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. The Haemodialysis (HEMO) Study. Kidney Int. 51(6), 2013–2017 (1997)Google Scholar
  69. 69.
    Levy, J., Morgan, J., Brown, E.: Oxford Handbook of Dialysis, 2nd edn. Oxford University Press, USA (2004)Google Scholar
  70. 70.
    Li, Z., Lew, N.L., Lazarus, J.M., et al.: Comparing the urea reduction ratio (URR) and the {urea clearance / dialysis time} product (Kt) as outcome based measures of hemodialysis dose. Am. J. Kidney Dis. 35(4), 598–605 (2000)Google Scholar
  71. 71.
    Locatelli, F., Buoncristiani, U., Canaud, B., et al.: Dialysis dose and frequency. Nephrol. Dial. Transplant. 20(2), 285–296 (2005)Google Scholar
  72. 72.
    Lowrie, E.G.: The normalized treatment ratio (Kt/V) is not the best dialysis dose parameter. Blood Purif. 18(4), 286–294 (2000)Google Scholar
  73. 73.
    Lowrie, E., Laird, N., Parker, T.F., et al.: Cooperative dialysis study. Kidney Int. 23(suppl. 13), S1–S122 (1983)Google Scholar
  74. 74.
    Lowrie, E., Teehan, B.: Principles of prescribing dialysis therapy: Implementing recommendations from the National Cooperative Dialysis Study. Kidney Int. 23(suppl. 13), S113–S122 (1983)Google Scholar
  75. 75.
    Lowrie, E.G., Lew, N.L.: The urea reducton ratio (URR): a simple method for evaluating haemodialysis treatment. Contemp. Dial. Nephrol. 12, 11–20 (1991)Google Scholar
  76. 76.
    Lowrie, E.G., Laird, N.M., Parker, T.F., et al.: Effect of the hemodialysis prescription on patient morbidity: Report from the National Cooperative Dialysis Study. N. Engl. J. Med. 305(20), 1176–1181 (1981)Google Scholar
  77. 77.
    Lowrie, E.G., Zhu, X., Lew, N.L., et al.: Predictors of hospitalization among hemodialysis patients. Memorandum to FMC(NA) medical directors. Fresenius Medical Care (NA) Ref. No. 98-08-07 (August 7, 1998a)Google Scholar
  78. 78.
    Lowrie, E.G., Zhu, X., Lew, N.L.: Primary associates of mortality urea reduction ratio as outcome-based measures of dialysis dose. Am. J. Kidney Dis. 32(6 suppl. 4), S16–S31 (1998b)Google Scholar
  79. 79.
    Lowrie, E.G., Chertow, G.M., Lew, N.L., et al.: The {clearance / time} product (Kt) as an outcome based measure of dialysis dose. Kidney Int. 56, 729–737 (1999)Google Scholar
  80. 80.
    Lowrie, E.G., Li, Z., Ofsthun, N., et al.: Body size, dialysis dose and death risk relationships among hemodialys is patients. Kidney Int. 62(2), 1891–1897 (2002)Google Scholar
  81. 81.
    Lowrie, E.G.: Response to ’The illogic of Kt/V’. Kidney Int. 75, 337 (2009)Google Scholar
  82. 82.
    Lowrie, E.G., Li, Z., Ofsthun, N., et al.: The online measurement of hemodialysis dose (Kt): clinical outcome as a function of body surface area. Kidney Int. 68(5), 1344–1354 (2005)Google Scholar
  83. 83.
    Maduell, F., Garcia-Valdecasas, J., Garcia, H., et al.: Urea reduction ratio considering urea rebound. Nephron 78(2), 143–147 (1998)Google Scholar
  84. 84.
    Maduell, F., Puchades, M.J., Navarro, V., et al.: Monitoring hemodialysis dose with ionic dialisance in on-line hemodiafiltration [Article in Spanish]. Nefrologia 25(5), 521–526 (2005)Google Scholar
  85. 85.
    Manzoni, C., Di Filippo, S., Corti, M., et al.: Ionic dialysance as a method for the on - line monitoring of delivered dialysis without blood sampling. Nephrol. Dial. Transplant. 11(10), 2023–2030 (1996)Google Scholar
  86. 86.
    Maeda, K.: An overview of dialysis treatment in Japan (as of December 31, 1997). Journal of Japanese Society for Dialysis Therapy 32(1), 1–17 (1999)MATHGoogle Scholar
  87. 87.
    McClellan, W.M., Soucie, J.M., Flanders, D.W.: Mortality in end-stage renal disease is associated with facility-to-facility differences in adequacy of hemodialysis. J. Am. Soc. Nephrol. 9(10), 1940–1947 (1998)Google Scholar
  88. 88.
    Movilli, E., Cancarini, G.C., Zani, R., et al.: Adequacy of dialysis reduces the doses of recombinant erythropoietin independently from the use of biocompatible membranes in haemodialysis patients. Nephrol. Dial. Transplant. 16(1), 111–114 (2001)Google Scholar
  89. 89.
    NKF-K/DOQI: Clinical Practice Guidelines and Clinical Practice Recommendations, Updates: Hemodialysis Adequacy, Peritoneal Dialysis Adequacy, Vascular Access. Am. J. Kidney Dis. 48(suppl. 1), S28–S58 (2006)Google Scholar
  90. 90.
    NKF-K/DOQI: Clinical practice guidelines for hemodialysis adequacy: Update. Am. J. Kidney Dis. 37(1 suppl. 1), S7–S64 (2001)Google Scholar
  91. 91.
    NKF-K/DOQI: Clinical Practice Guidelines for Nutrition in Chronic Renal Failure. Am. J. Kidney Dis. 35(6 suppl. 2), S1–S140 (2000)Google Scholar
  92. 92.
    NKF-K/DOQI: Clinical Practice Guidelines for hemodialysis adequacy. Am. J. Kidney Dis. 30(3 suppl. 2), S15–S136 (1997)Google Scholar
  93. 93.
    Oliva Gómez, J.S., Roa Romero, L.M., et al.: Dynamical approach to the dimensionless expression Kt/V. A retrospective study on the andalusian population on treatment with hemodialysis. In: Proceedings of the XXVII Annual Congress of the Spanish Society of Biomedical Engineering, Cadiz, pp. 243–246 (2009); ISBN: 978-84-608-0990-6Google Scholar
  94. 94.
    Owen Jr. W.F., Lew, N.L., Liu, Y., et al.: The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing haemodialysis. N. Engl. J. Med. 329(14), 1001–1006 (1993)Google Scholar
  95. 95.
    Owen, W.F., Chertow, G.M., Lazarus, J.M., et al.: Dose of hemodialysis and survival: Differences by race and sex. J. Am. Med. Assoc. 280(20), 1764–1768 (1998)Google Scholar
  96. 96.
    Parker III, T.F., Husni, L., Huang, W., et al.: Survival of hemodialysis patients in the United States is improved with a greater quantity of dialysis. Am. J. Kidney Dis. 23(5), 670–680 (1994)Google Scholar
  97. 97.
    Peterson, S., Sigman-Grant, M., Eissenstat, B., Kris-Etherton, P.: Impact of adopting lower-fat food choices on energy and nutrient intake in American adults. J. Am. Diet Assoc. 99, 177–183 (1999)Google Scholar
  98. 98.
    Petitclerc, T., Goux, N., Reynier, A.L., et al.: A model for non-invasive estimation of in-vivo dialyzer performances and patient’s conductivity during hemodialysis. Int. J. Artif. Organs 16(8), 585–591 (1993)Google Scholar
  99. 99.
    Polaschegg, H.D.: Automatic non-invasive intradialytic clearance measurements. Int. J. Artif. Organs 16(4), 185–191 (1993)Google Scholar
  100. 100.
    Salahudeen, A.K., Fleischmann, E.H., Bower, J.D.: lmpact of lower delivered Kt/V on the survival of overweight patients on hemodialysis. Kidney Int. 56(6), 2254–2259 (1999)Google Scholar
  101. 101.
    Salahudeen, A.K., Dykes, P., May, W.: Risk factors for higher mortality at the highest levels of spKt/V in haemodialysis patients. Nephrol. Dial. Transplant. 18(7), 1339–1344 (2003)Google Scholar
  102. 102.
    Sargent, J.: Control of dialysis by a single-pool urea model: The National Cooperative Dialysis Study. Kidney Int. 23(suppl. 13), S19–S26 (1983)Google Scholar
  103. 103.
    Sargent, J., Gotch, F., Borah, M., et al.: Urea kinetics: A guide to nutritional management of renal failure. Am. J. Clin. Nutr. 31, 1696–1702 (1978)Google Scholar
  104. 104.
    Sargent, J.A., Gotch, F.A.: The study of uremia by manipulation of blood concentrations using combinations of hollow fiber devices. Trans. Am. Soc. Artif. Intern. Organs 20A, 395–401 (1974)Google Scholar
  105. 105.
    Sargent, J.A., Gotch, F.A.: The analysis of concentration dependence of uremic lesions in clinical studies. Kidney Int. suppl. 2(2), S35–S44 (1975)Google Scholar
  106. 106.
    Sargent, J.A., Gotch, F.A.: Mathematic modeling of dialysis therapy. Kidney Int. Suppl. 10, S2–S10 (1980)Google Scholar
  107. 107.
    Sargent, J.A., Gotch, F.A.: Mathematic modeling of dialysis therapy. Kidney Int. 18, 2–10 (1980)Google Scholar
  108. 108.
    Sargent, J., Gotch, F.: Principles and biophysics of dialysis. In: Drukkcr, W., Parsons, F., Maher, J. (eds.) Replacement of Renal Function by Dialysis, 2nd edn. Martinues Nijhoff, Hague (1985)Google Scholar
  109. 109.
    Schneditz, D., Daugirdas, J.T.: Compartment effects in hemodialysis. Semin. Dial. 14(4), 271–277 (2001)Google Scholar
  110. 110.
    Sherman, R.A., Cody, R.P., Rogers, M.E., et al.: Accuracy of the urea reduction ratio in predicting dialysis delivery. Kidney Int. 47(1), 319–321 (1995)Google Scholar
  111. 111.
    Shinzato, T., Nakai, S., Akiba, T., et al.: Survival in long-term haemodialysis patients: results from the annual survey of the Japanese Society for Dialysis Therapy. Nephrol. Dial. Transplant. 12(5), 884–888 (1997)Google Scholar
  112. 112.
    Smye, S.W., Hydon, P.E., Will, E.: An Analysis of the Single-Pool Urea Kinetic Model and Estimation of Errors. Phys. Med. Biol. 38(1), 115–122 (1993)Google Scholar
  113. 113.
    Spalding, E.M., Chandna, S.M., Davenport, A., et al.: Kt/V underestimates the hemodialysis dose in women and small men. Kidney Int. 74(3), 348–355 (2008)Google Scholar
  114. 114.
    Spalding, E.M., Chandna, S.M., Davenport, A., Farrington, K.: Response to the illogic of Kt/V. Kidney Int. 75, 337 (2009)Google Scholar
  115. 115.
    Suri, R.S., Garg, A.X., Chertow, G.M., et al.: For the Frequent Hemodialysis Network (FHN) Trial Group: Frequent Hemodialysis Network (FHN) randomized trials: study design. Kidney Int. 71, 349–359 (2007)Google Scholar
  116. 116.
    The Renal Association, Recommended standards for haemodialysis. Royal College of Physicians of London. Treatment of adult patients with renal failure. Recommended Standards and Audit Measure 29(3), 190–191 (1997)Google Scholar
  117. 117.
    Vanholder, R.C.: Assessment of Urea and Other Uremic Markers for Quantification of Dialysis Efficiency. Clin. Chem. 38(8), 1429–1436 (1992)Google Scholar
  118. 118.
    Vanholder, R., De Smet, R., Glorieux, G., et al.: Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 63(5), 1934–1943 (2003)Google Scholar
  119. 119.
    Vlatković, V., Stojimirović, B.: Determination of the delivered hemodialysis dose using standard methods and on – line clearance monitoring. Vojnosanit. Pregl. 63(8), 743–747 (2006)Google Scholar
  120. 120.
    Watson, P.E., Watson, I.D., Batt, R.D.: Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am. J. Clin. Nutr. 33(1), 27–39 (1980)Google Scholar
  121. 121.
    Wolf, A.V., Remp, D.G., Kiley, J.E., et al.: Artificial kidney function; kinetics of hemodialysis. J. Clin. Invest. 30(10), 1062–1070 (1951)Google Scholar
  122. 122.
    Wuepper, A., Tattersall, J., Kraemer, M., et al.: Determination of urea distribution volume for Kt/V assessed by conductivity monitoring. Kidney Int. 64(6), 2262–2271 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alicja E. Grzegorzewska
    • 1
  • Ahmad Taher Azar
    • 2
  • Laura M. Roa
    • 3
  • J. Sergio Oliva
    • 3
  • José A. Milán
    • 3
  • Alfonso Palma
    • 3
  1. 1.Poznañ University of Medical SciencesPoznañPoland
  2. 2.Computer and Software Engineering Department Faculty of EngineeringMisr University for Science & Technology (MUST)6th of October CityEgypt
  3. 3.Biomedical Engineering GroupUniversity of Sevilla, ESISevilleSpain

Personalised recommendations