A Holonic Approach to Myopic Behavior Correction for the Allocation Process in Flexible-Job Shops Using Recursiveness

  • Gabriel Zambrano Rey
  • Nassima Aissani
  • Abdelghani Bekrar
  • Damien Trentesaux
Part of the Studies in Computational Intelligence book series (SCI, volume 402)


This chapter’s main interest is the myopic behaviour inherent to holonic control architectures. Myopic behaviour is the lack of coherence among local decision-making and system’s global goals. So far, holonic architectures use mediator entities to overcome this issue, bringing the holonic paradigms more toward hierarchy than heterarchy. Instead, this chapter explores the recursiveness characteristic of holonic manufacturing systems (HMS) as a possible way to correct myopic behaviour, by distributing decision-making over adjunct entities. The chapter explains our approach and its agent-based implementation for solving the allocation problem in a flexible job-shop. Results from simulations are compared with a mixed-integer linear program to determine its efficiency in terms of makespan and execution time. Preliminary results encourage further research in this area.


holonic manufacturing myopia resource allocation recursiveness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babiceanu, R., Chen, F.: Development and Applications of Holonic Manufacturing Systems: A Survey. Journal of Intelligent Manufacturing 17, 111–131 (2006)CrossRefGoogle Scholar
  2. 2.
    Bongaerts, L., Monostori, L., McFarlane, D., Kadar, B.: Hierarchy in distributed shop floor control. Computers in Industry 43, 123–137 (2000)CrossRefGoogle Scholar
  3. 3.
    Cardin, O., Castagna, P.: Using online simulation in holonic manufacturing systems. Eng. App. of Art. Intell. 22, 1025–1033 (2009)CrossRefGoogle Scholar
  4. 4.
    Caumond, A., Lacomme, P., Moukrim, A., Tchernev, N.: An MILP for scheduling problems in an FMS with one vehicle. E. Journal of Operational Research 199, 706–722 (2009)MATHCrossRefGoogle Scholar
  5. 5.
    Chituc, C., Restivo, J.: Challenges and trends in distributed manufacturing systems: are wise engineering systems the ultimate answer? In: Int. Symp. on Eng. Syst. MIT, Cambridge (2009)Google Scholar
  6. 6.
    Chryssolouris, G.: An Approach for Allocating Manufacturing Resources to Production Tasks. Journal of Manufacturing Systems 10, 368–382 (1991)CrossRefGoogle Scholar
  7. 7.
    Conway, R., Maxwell, W., Miller, L.: Theory of scheduling. Addison-Wesley (1967)Google Scholar
  8. 8.
    Dilts, D., Boyd, N., Whorms, H.: The Evolution of Control Architectures for Automated Manufacturing Systems. J. of Manuf. Sys. 10, 79–93 (1991)CrossRefGoogle Scholar
  9. 9.
    Giret, A., Botti, V.: Towards an Abstract Recursive Agent. I. Comp-Aided Eng. 11, 165–177 (2004)Google Scholar
  10. 10.
    Giret, A., Botti, V.: Anemona: a multi-agent methodology for holonic manufacturing systems. Springer, Heidelberg (2008)Google Scholar
  11. 11.
    Giret, A., Botti, V.: Holons and agents. Journal of Intell. Manufacturing 15, 645–659 (2004)CrossRefGoogle Scholar
  12. 12.
    IBM ILOG CPLEX Optimizer, High performance mathematical optimization engines, (visited June 15, 2011)
  13. 13.
    Leitão, P.: Agent-based distributed manufacturing control: a state-of-the-art survey. Engineering Applications of Artificial Intelligence 22, 979–991 (2009)CrossRefGoogle Scholar
  14. 14.
    Leitão, P., Restivo, F.: ADACOR: A holonic architecture for agile and adaptive manufacturing control. Computers in Indistry 57, 121–130 (2006)CrossRefGoogle Scholar
  15. 15.
    Shen, W., Hao, Q., Yoon, H., Norrie, D.: Applications of agent-based systems in intelligent manufacturing: an updated review. Ad. Eng. Inf. 20, 415–431 (2006)CrossRefGoogle Scholar
  16. 16.
    Sousa, P., Ramos, C., Neves, J.: Scheduling in holonic manufacturing systems. In: Process Planning and Scheduling for Distributed Manufacturing. Springer, Heidelberg (2007)Google Scholar
  17. 17.
    Trentesaux, D.: Distributed control of production systems. Engineering Applications of AI 22, 971–978 (2009)Google Scholar
  18. 18.
    Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference architecture for holonic manufacturing systems: PROSA. Computers in Industry 37, 255–274 (1998)CrossRefGoogle Scholar
  19. 19.
    Weyns, D., Holvoet, T., Helleboogh, A.: Anticipatory Vehicle Routing using Delegate Multi-Agent Systems. In: IEEE Intelligent Transport Systems Conference, Seattle, WA, pp. 87–93 (2007)Google Scholar
  20. 20.
    Zambrano, G., Pach, C., Adam, E., Berger, T., Trentesaux, D.: Myopic Behaviour in Heterarchical Control of FMS. In: Int. Conf. on Ind. Eng. and Syst. Management, IESM 2011, Metz (2011)Google Scholar
  21. 21.
    Zambrano, G., Pach, C., Aissani, N., Berger, T., Trentesaux, D.: An approach for temporal myopia reduction in heterarchical control architectures. In: Intl. IEEE Conf. on Industrial Electronics, Gdansk (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Gabriel Zambrano Rey
    • 1
    • 2
    • 3
  • Nassima Aissani
    • 1
    • 2
  • Abdelghani Bekrar
    • 1
    • 2
  • Damien Trentesaux
    • 1
    • 2
  1. 1.Univ. Lille Nord de FranceLilleFrance
  2. 2.TEMPO Lab., PSI TeamUVHCValenciennesFrance
  3. 3.Department of Industrial EngineeringPontificia Universidad JaverianaBogotáColombia

Personalised recommendations