Engineering Hierarchical Complex Systems: An Agent-Based Approach. The Case of Flexible Manufacturing Systems

  • Gildas Morvan
  • Daniel Dupont
  • Jean-Baptiste Soyez
  • Rochdi Merzouki
Part of the Studies in Computational Intelligence book series (SCI, volume 402)

Abstract

This chapter introduces a formal model to specify, model and validate hierarchical complex systems described at different levels of analysis. It relies on concepts that have been developed in the multi-agent-based simulation (MABS) literature: level, influence and reaction. One application of such model is the specification of hierarchical complex systems, in which decisional capacities are dynamically adapted at each level with respect to the emergences/constraints paradigm. In the conclusion, we discuss the main perspective of this work: the definition of a generic meta-model for holonic multi-agent systems (HMAS).

Keywords

multi-level multi-agent based simulations formal models hierarchical systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banaszak, Z., Krogh, B.: Deadlock avoidance in flexible manufacturing systems with concurrently competing process flows. IEEE Transactions on Robotics and Automation 6(6), 724–734 (1990)CrossRefGoogle Scholar
  2. 2.
    Bendriss, S., Benabdelhafid, A., Boukachour, J., Boudebous, D.: Meta-modèle de référence holonique pour la gestion de la traçabilité du produit dans la chaîne logistique. In: 5ème Colloque International Conception et Production Intégrées -CPI 2007 (2007)Google Scholar
  3. 3.
    Duffie, N.: Heterarchical control of highly distributed manufacturing systems. International Journal of Computer Integrated Manufacturing 9(4), 270–281 (1996)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ezpeleta, J., Tricas, F., Garcia-Valles, F., Colom, J.: A banker’s solution for deadlock avoidance in fms with flexible routing and multiresource states. IEEE Transactions on Robotics and Automation 18(4), 621–625 (2002)CrossRefGoogle Scholar
  5. 5.
    Ferber, J., Müller, J.P.: Influences and reaction: a model of situated multiagent systems. In: 2nd International Conference on Multi-agent systems (ICMAS 1996), pp. 72–79 (1996)Google Scholar
  6. 6.
    Gaud, N., Galland, S., Gechter, F., Hilaire, V., Koukam, A.: Holonic multilevel simulation of complex systems: Application to real-time pedestrians simulation in virtual urban environment. Simulation Modelling Practice and Theory 16, 1659–1676 (2008)CrossRefGoogle Scholar
  7. 7.
    Gil Quijano, J., Hutzler, G., Louail, T.: Accroche-toi au niveau, j’enlève l’échelle: Éléments d’analyse des aspects multiniveaux dans la simulation à base d’agents. Revue d’Intelligence Artificielle 24(5), 625–648 (2010)CrossRefGoogle Scholar
  8. 8.
    Goldstein, H.: Multilevel Statistical Models. Wiley Series in Probability and Statistics, 4th revised edn. Wiley-Blackwell (2010)Google Scholar
  9. 9.
    Horstemeyer, M.: Multiscale Modeling: A Review. In: Practical Aspects of Computational Chemistry Methods, Concepts and Applications, pp. 87–135. Springer, Heidelberg (2010)Google Scholar
  10. 10.
    Kubera, Y., Mathieu, P., Picault, S.: Interaction-oriented agent simulations: From theory to implementation. In: Proceeding of the 2008 conference on ECAI 2008: 18th European Conference on Artificial Intelligence, pp. 383–387. IOS Press (2008)Google Scholar
  11. 11.
    Lucia, A.: Multi-scale methods and complex processes: A survey and look ahead. Computers & Chemical Engineering 34(9), 1467–1475 (2010); Selected Papers from the 7th International Conference on the Foundations of Computer-Aided Process Design (FOCAPD 2009), Breckenridge, Colorado (2009)Google Scholar
  12. 12.
    McGregor, S., Fernando, C.: Levels of description: A novel approach to dynamical hierarchies. Artificial Life 11(4), 459–472 (2005)CrossRefGoogle Scholar
  13. 13.
    Michel, F.: The IRM4S model: the influence/reaction principle for multiagent based simulation. In: AAMAS 2007: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1–3. ACM, New York (2007)CrossRefGoogle Scholar
  14. 14.
    Morin, E.: Method: Towards a Study of Humankind, vol. 1. Peter Lang. Pub. Inc. (1992)Google Scholar
  15. 15.
    Morvan, G., Jolly, D., Veremme, A., Dupont, D., Charabidze, D.: Vers une méthode de modélisation multi-niveaux. In: Actes de la 7ème Conférence de Modélisation et Simulation MOSIM, vol. 1, pp. 167–174 (2008)Google Scholar
  16. 16.
    Morvan, G., Veremme, A., Dupont, D.: IRM4MLS: The Influence Reaction Model for Multi-Level Simulation. In: Bosse, T., Geller, A., Jonker, C.M. (eds.) MABS 2010. LNCS(LNAI), vol. 6532, pp. 16–27. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Morvan, G., Veremme, A., Dupont, D., Jolly, D.: Modélisation et conception multi-niveau de systèmes complexes: stratégie d’agentification des organisations. Journal Européen des Systèmes Automatisés 43, 381–406 (2009)CrossRefGoogle Scholar
  18. 18.
    Müller, J.-P.: Towards a Formal Semantics of Event-based Multi-agent Simulations. In: David, N., Sichman, J.S. (eds.) MAPS 2008. LNCS, vol. 5269, pp. 110–126. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    19 Müller, J.P., Ratzé, C., Gillet, F., Stoffel, K.: Modeling and simulating hierarchies using an agent-based approach. In: Proceedings of the MODSIM 2005 International Congress on Modelling and Simulation, 1631–1638 (2005) Google Scholar
  20. 20.
    Navarro, L., Flacher, F., Corruble, V.: Dynamic level of detail for large scale agent-based urban simulations. In: Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2011), pp. 701–708 (2011)Google Scholar
  21. 21.
    Van Dyke Parunak, H.: Pheromones, Probabilities, and Multiple Futures. In: Bosse, T., Geller, A., Jonker, C.M. (eds.) MABS 2010. LNCS(LNAI), vol. 6532, pp. 44–60. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Van Dyke Parunak, H., Brueckner, S.: Concurrent Modeling of Alternative Worlds with Polyagents. In: Antunes, L., Takadama, K. (eds.) MABS 2006. LNCS (LNAI), vol. 4442, pp. 128–141. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Ratzé, C., Gillet, F., Müller, J.P., Stoffel, K.: Simulation modelling of ecological hierarchies in constructive dynamical systems. Ecological Complexity 4(1-2), 13–25 (2007)CrossRefGoogle Scholar
  24. 24.
    Sallez, Y., Berger, T., Deneux, D., Trentesaux, D.: The lifecycle of active and intelligent products: The augmentation concept. International Journal of Computer Integrated Manufacturing 23(10), 905–924 (2010)CrossRefGoogle Scholar
  25. 25.
    Sallez, Y., Berger, T., Raileanu, S., Chaabane, S., Trentesaux, D.: Semi-heterarchical control of FMS: From theory to application. Eng. Appl. Artif. Intell. 23, 1314–1326 (2010)CrossRefGoogle Scholar
  26. 26.
    Servat, D., Pierrer, E., Treuil, J., Drogoul, A.: Towards Virtual Experiment Laboratories: How Multi-Agent Simulations Can Cope with Multiple Scales of Analysis and Viewpoints. In: Heudin, J.-C. (ed.) VW 1998. LNCS (LNAI), vol. 1434, pp. 205–217. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  27. 27.
    Soyez, J.B., Morvan, G., Merzouki, R., Dupont, D., Kubiak, P.: lisation et simulation multi-agents multi-niveaux. Submitted to Studia Informatica Universalis (2011)Google Scholar
  28. 28.
    Steinhauser, M.: Computational Multiscale Modeling of Fluids and Solids. Springer, Heidelberg (2008)MATHGoogle Scholar
  29. 29.
    Stratulat, T., Ferber, J., Tranier, J.: Masq: towards an integral approach to interaction. In: AAMAS 2009: Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems, pp. 813–820. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2009)Google Scholar
  30. 30.
    Ueda, K., Kitob, T., Fujii, N.: Modeling biological manufacturing systems with bounded-rational agents. CIRP Annals - Manufacturing Technology 55(1), 469–472 (2006)CrossRefGoogle Scholar
  31. 31.
    Ueda, K., Markusb, A., Monostori, L., Kalsc, H., Arai, T.: Emergent synthesis methodologies for manufacturing. CIRP Annals - Manufacturing Technology 50(2), 535–551 (2001)CrossRefGoogle Scholar
  32. 32.
    Ueda, K., Vaario, J., Ohkura, K.: Modelling of biological manufacturing systems for dynamic reconfiguration. CIRP Annals - Manufacturing Technology 46(1), 343–346 (1997)CrossRefGoogle Scholar
  33. 33.
    Uhrmacher, A.M., Ewald, R., John, M., Maus, C., Jeschke, M., Biermann, S.: Combining micro and macro-modeling in devs for computational biology. In: Proceedings of the 39th Conference on Winter Simulation: 40 years! The Best is Yet to Come, WSC 2007, pp. 871–880. IEEE Press, Piscataway (2007)Google Scholar
  34. 34.
    Van Brussel, H.: Holonic manufacturing systems, the vision matching the problem. In: Proc. of First European Conf. on Holonic Manufacturing Systems (2007)Google Scholar
  35. 35.
    Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference architecture for holonic manufacturing systems: PROSA. Computers in Industry 37(3), 255–274 (1998)CrossRefGoogle Scholar
  36. 36.
    Weyns, D., Holvoet, T.: Model for Simultaneous Actions in Situated Multi-agent Systems. In: Schillo, M., Klusch, M., Müller, J., Tianfield, H. (eds.) MATES 2003. LNCS (LNAI), vol. 2831, pp. 105–118. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  37. 37.
    Weyns, D., Holvoet, T.: A formal model for situated multi-agent systems. Fundamenta Informaticae 63(2-3), 125–158 (2004)MathSciNetMATHGoogle Scholar
  38. 38.
    Weyns, D., Holvoet, T., Schelfthout, K., Wielemans, J.: Decentralized control of automatic guided vehicles: applying multi-agent systems in practice. In: Companion to the 23rd ACM SIGPLAN Conference on Object-oriented Programming Systems Languages and Applications, OOPSLA Companion 2008, pp. 663–674. ACM, New York (2008)CrossRefGoogle Scholar
  39. 39.
    Weyns, D., Boucké, N., Holvoet, T.: Gradient field-based task assignment in an agv transportation system. In: Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2006, pp. 842–849. ACM, New York (2006)CrossRefGoogle Scholar
  40. 40.
    Yoo, J.W., Sim, E., Cao, C., Park, J.W.: An algorithm for deadlock avoidance in an agv system. The International Journal of Advanced Manufacturing Technology 26, 659–668 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Gildas Morvan
    • 1
    • 2
  • Daniel Dupont
    • 1
    • 3
  • Jean-Baptiste Soyez
    • 1
    • 4
  • Rochdi Merzouki
    • 1
    • 4
  1. 1.Univ. Lille Nord de FranceLille cedexFrance
  2. 2.LGI2AU. Artois, Technoparc FuturaBéthuneFrance
  3. 3.HEILille CedexFrance
  4. 4.LAGISEC-LilleVilleneuve D’ascq cedexFrance

Personalised recommendations