Advertisement

Service Oriented Control Framework for a Holonic System Characterized by a Guided Flow of Entities

  • Theodor Borangiu
  • Silviu Raileanu
  • Octavian Stocklosa
  • Christian Tahon
  • Thierry Berger
  • Damien Trentesaux
Part of the Studies in Computational Intelligence book series (SCI, volume 402)

Abstract

The chapter presents a new concept of systems characterized by a flow of active entities which run on a guided network. After the general characterization (nature, mobility, service) of an entity, the three basic components of the system are described: active and non active entity and active generalised entity, elements which are structured and implemented as holons. With the three types of basic holons and with the generic services offered by them, the structural and dynamic models are formed. The framework is extended with the behavioural model consisting of the planning, scheduling, routing and execution of the operations. The control framework is completed with the implementation architecture based on intelligent embedded devices and a multi-agent programming environment for rapid configuration and integration.

Keywords

flexible manufacturing system personal rapid transit control system service orientation mobile entity driven automation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, J.E.: Control of Personal Rapid Transit Systems. JAT 32(1) (1998)Google Scholar
  2. 2.
    Borangiu, T., Răileanu, S., Trentesaux, D., Berger, T.: Open Manufacturing Control with Agile Reconfiguring of Robot Services. In: 19th International Workshop on Robotics in Alpe-Adria-Danube Region, RAAD 2010, Budapest, Hungary, June 23-25 (2010) ISBN: 978-1-4244-6884-3Google Scholar
  3. 3.
    Borangiu, T., Răileanu, S., Anton, F., Parlea, M., Tahon, C., Berger, T., Trentesaux, D.: Product-driven automation in a service oriented manufacturing cell. In: International Conference on Industrial Engineering and Systems Management, IESM 2011, Metz, France (2011)Google Scholar
  4. 4.
    Brussel, H.V., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference Architecture for Holonic Manufacturing Systems: PROSA. Computers in Industry 37(3), 255–274 (1998); Special issue on manufacturing systems, ISSN: 0166-3615CrossRefGoogle Scholar
  5. 5.
    Fischer, K., Schillo, M., Siekmann, J.: Holonic Multiagent Systems: A Foundation for the Organisation of Multiagent Systems. In: Mařík, V., McFarlane, D.C., Valckenaers, P. (eds.) HoloMAS 2003. LNCS (LNAI), vol. 2744, pp. 71–80. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Koestler, A.: The Ghost in the Machine. Arkana Books, London (1967)Google Scholar
  7. 7.
    Leitão, P.: An Agile and Adaptive Holonic Architecture for Manufacturing, Control. PhD Thesis (2004)Google Scholar
  8. 8.
    Le Moigne, J.L.: La théorie du système général, Théorie de la modélisation, 2nd edn., p. 338. PUF, Paris (1994)Google Scholar
  9. 9.
    Sauer, O.: Automated engineering of manufacturing execution systems – a contribution to “adaptivity” in manufacturing companies. In: Proceedings of DET 2008 5th International Conference on Digital Enterprise Technology Nantes, France, October 22-24 (2008)Google Scholar
  10. 10.
    Smith, R.: The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver. IEEE Transactions on Computers - TC 29(12), 1104–1113 (1980), doi:10.1109/TC.1980.1675516CrossRefGoogle Scholar
  11. 11.
    Trentesaux, D.: Les systèmes de pilotage hétérarchiques: innovations réelles ou modèles stériles? Journal Européen des Systèmes Automatisés 9-10, 1165–1202 (2007) ISSN 1269-6935CrossRefGoogle Scholar
  12. 12.
    Borangiu, T., Gilbert, P., Ivanescu, N.A., Rosu, A.: An implementing framework for holonic manufacturing control with multiple robot-vision stations. Engineering Applications of AI 22(4-5), 505–521 (2009)Google Scholar
  13. 13.
    Barata, J.: The Cobasa architecture as an answer to shop floor agility, manufacturing the future - concepts, technology. In: Visions, pp. 31–76. Pro Literatur Verlag (2006)Google Scholar
  14. 14.
    Brussel, H.V., et al.: Reference architecture for holonic manufacturing systems: PROSA. Computers in Industry 37(3), 255–274 (1998)CrossRefGoogle Scholar
  15. 15.
    Valckenaers, P., Van Brussel, H., Bruyninckx, H., Saint Germain, B., Van Belle, J., Philips, J.: Predicting the unexpected. Computers in Industry (2011), doi:10.1016/l.compind.2011.04.011Google Scholar
  16. 16.
    Demirkan, H., Kauffman, R.J., Vayghan, J.A., Fill, H.-G., Karagiannis, D., Maglio, P.P.: Service-oriented technology and management: Perspectives on research and practice for the coming decade. Electronic Commerce Research and Applications 7, 356–376 (2008), doi:10.1016/j.elerap.2008.07.002CrossRefGoogle Scholar
  17. 17.
    Meyer, G., Främling, K., Holmström, J.: Intelligent products: A survey. Computers in Industry (2008), doi:10.1016/j.compind.2008.12.005Google Scholar
  18. 18.
    Barbosa, J., Leitao, P.: Enhancing Service-oriented Multi-agent Systems with Self-organization. In: Proceedings of International Conference on Industrial Engineering and Systems Management IESM 2011, Metz (2011)Google Scholar
  19. 19.
    Leitao, P.: Agent-based distributed manufacturing control: A state-of-the-art survey. Int. Journal of Engineering Applications of AI 22(7), 979–991 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Theodor Borangiu
    • 1
  • Silviu Raileanu
    • 1
  • Octavian Stocklosa
    • 2
  • Christian Tahon
    • 3
    • 4
  • Thierry Berger
    • 3
    • 4
  • Damien Trentesaux
    • 3
    • 4
  1. 1.Dept. of Automation and Industrial InformaticsUniversity Politehnica of BucharestBucharestRomania
  2. 2.East ElectricBucharestRomania
  3. 3.Université Lille Nord de FranceLilleFrance
  4. 4.TEMPO LabUVHCValenciennesFrance

Personalised recommendations