Uncertain Data Classification Using Rough Set Theory

  • G. Vijay Suresh
  • E. Venkateswara Reddy
  • E. Srinivasa Reddy
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 132)


Data uncertainty is common in real-world applications due to various causes, including imprecise measurement, network latency, out-dated sources and sampling errors. As a result there is a need for tools and techniques for mining and managing uncertain data. In this paper proposes a Rough Set method for handling data uncertainty. Rough set is a mathematical theory for dealing with uncertainty. Uncertainty implies inconsistencies, which are taken into account, so that the produced are categorized into certain and possible with the help of rough set theory Experimental results show that proposed model exhibits reasonable accuracy performance in classification on uncertain data.


Uncertain Data Artificial Intelligence Approach Existential Uncertainty Knowledge Engineer Review Conceptual Schema Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leung, C.K.-S.: Mining uncertain data. In: WIREs Data Mining and Knowledge Discovery, vol. 1, p. 2. John Wiley & Sons, Inc. (2011)Google Scholar
  2. 2.
    Suresh, G.V., Shaik, S., Reddy, E.V., Shaik, U.A.: Gaussian Process Model for Uncertain Data Classification. International Journal of Computer Science and Information Security (IJCSIS) 8(9), 111–115 (2010)Google Scholar
  3. 3.
    Chau, M., Cheng, R., Kao, B.: Uncertain Data Mining: A New Research Direction. In: Proceedings of the Workshop on the Sciences of the Artificial, Hualien, Taiwan, December 7-8 (2005)Google Scholar
  4. 4.
    Aggarwal, C.C.: Managing and Mining Uncertain Data. Kluwer Academic Publishers, BostonGoogle Scholar
  5. 5.
    Aggarwal, C.C.: A Survey of Uncertain Data Algorithms and Applications. IEEE Transactions on Knowledge and Data Engineering 21(5) (2009)Google Scholar
  6. 6.
    Aggarwal, C.C., Yu, P.S.: Outlier detection with uncertain data. In: SDM, pp. 483–493. SIAM (2008)Google Scholar
  7. 7.
    Hamdan, H., Govaert, G.: Mixture Model Clustering of Uncertain Data. In: IEEE International Conference on Fuzzy Systems, pp. 879–884 (2005)Google Scholar
  8. 8.
    Pawlak, Z.: Rough sets. Int. J. of Information and Computer Sciences 11(5), 341–356 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Pawlak, Z., Skowron, A.: Rough membership function. In: Yeager, R.E., Fedrizzi, M., Kacprzyk, J. (eds.) Advaces in the Dempster-Schafer of Evidence, pp. 251–271. Wiley, New York (1994)Google Scholar
  10. 10.
    Voges, K.E.: Research Techniques Derived From Rough Sets Theory: Rough Classification and Rough Clustering (2005)Google Scholar
  11. 11.
    Olve Maudal, Y.: Preprocessing data for Neural Network based Classifiers: Rough Sets vs Principal Component Analysis. Project report, Department of Artificial Intelligence, University of Edinburgh (1996) 16, 20, 41, 42, 47, 60Google Scholar
  12. 12.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982) ISSN 0091-7036. 2CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Pawlak, Z.: Rough Sets: Theoretical A spects of Reasoning About Data. Kluwer Academic Publishers, Dordrecht (1991)2, 15, 16, 69, 70Google Scholar
  14. 14.
    Mac Parthalain, M., Shen, Q.: On rough sets, their recent extensions and applications. The Knowledge Engineering Review 25(4), 365–395 (2010)CrossRefGoogle Scholar
  15. 15.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)Google Scholar
  16. 16.
    Knonenko, I., Bratko, I., Roskar, E.: Experiments in automatic learning of medical diagnostic rules. Technical Report, Jozef Stefan Institute, Ljubljana, Yugoslavia (1984)Google Scholar
  17. 17.
    Michalski, R.S.: A theory and methodology of inductive learning. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning. An Artificial Intelligence Approach, pp. 83–134. Morgan Kaufmann (1983)Google Scholar
  18. 18.
    Grzymala-Busse, J.W.: On the Unknown Attribute Values in Learning from Examples. In: Proc. of the ISMIS 1991, 6th International Symposium on Methodologies for Intelligent Systems, Charlotte, North Carolina, October 16–19, pp. 368–377 (1991)Google Scholar
  19. 19.
    Komorowski, J., Øhrn, A., et al.: The ROSETTA Rough Set Software System. In: Klösgen, W., Zytkow, J. (eds.) Handbook of Data Mining and Knowledge Discovery, pp. I554–I559. Oxford University Press (2002)Google Scholar
  20. 20.
    Andersson, R., Vesterlund, J.: GENOMIC ROSETTA - Application Mode User Manual. The Linnaeus Centre for Bioinformatics, Uppsala (2005)Google Scholar
  21. 21.
    Hastie, T., Tibshirani, R.J., et al.: The Elements of Statistical Learning. Springer, New York (2001)zbMATHGoogle Scholar
  22. 22.
    Quinlan, J.R.: Probabilistic decision trees. In: Kodratoff, Y., Michalski, R.S. (eds.) Machine Learning. An Artificial Intelligence Approach, vol. III, pp. 140–152 (1990)Google Scholar
  23. 23.
    Yasdi, R., Ziarko, W.: An expert system for conceptual schema design: A machine learning approach. Int. J. Man-Machine Studies 29, 351–376 (1988)CrossRefzbMATHGoogle Scholar
  24. 24.
    Jacobs, I.S., Yao, Y.Y.: A stept owards the foundation s of data mining. Data Mining and Knowledg e Discovery: Theory, Tools, and Technology V.The International Society for Optical Engineering, 254–263 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • G. Vijay Suresh
    • 1
  • E. Venkateswara Reddy
    • 1
  • E. Srinivasa Reddy
    • 1
  1. 1.University College of Engineering & Technology, ANUGunturIndia

Personalised recommendations