Polynomial Lattice Point Sets

  • Friedrich Pillichshammer
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 23)


Polynomial lattice point sets are special types of (t, m, s)-nets as introduced by H. Niederreiter in the 1980s. Quasi-Monte Carlo rules using them as underlying nodes are called polynomial lattice rules. In their overall structure polynomial lattice rules are very similar to usual lattice rules due to E. Hlawka and N. M. Korobov. The main difference is that here one uses polynomial arithmetic over a finite field instead of the usual integer arithmetic. In this overview paper we give a comprehensive review of the research on polynomial lattice rules during the last decade. We touch on topics like extensible polynomial lattice rules, higher order polynomial lattice rules and the weighted discrepancy of polynomial lattice point sets. Furthermore we compare polynomial lattice rules with lattice rules and show what results for polynomial lattice rules also have an analog for usual lattice rules and vice versa.


Star Discrepancy Lattice Rule Optimal Convergence Rate Walsh Function Smoothness Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is partially supported by the Austrian Science Foundation (FWF), Project S9609, that is part of the Austrian National Research Network “Analytic Combinatorics and Probabilistic Number Theory”. The author also thanks Josef Dick and Peter Kritzer for many remarks and suggestions.


  1. 1.
    Baldeaux, J. and Dick, J.: A construction of polynomial lattice rules with small gain coefficients. Numer. Math. 119: 271–297, 2011.Google Scholar
  2. 2.
    Baldeaux, J., Dick, J., Greslehner, J. and Pillichshammer, F.: Construction algorithms for higher order polynomial lattice rules. J. Complexity 27: 281–299, 2011.Google Scholar
  3. 3.
    Baldeaux, J., Dick, J. and Kritzer, P.: On the approximation of smooth functions using generalized digital nets. J. Complexity 25: 544–567, 2009.Google Scholar
  4. 4.
    Baldeaux, J., Dick, J., Leobacher, G., Nuyens, D. and Pillichshammer, F.: Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules. Numer. Algorithms 59: 403–431, 2012.Google Scholar
  5. 5.
    Béjian, R.: Minoration de la discrépance d’une suite quelconque sur T. Acta Arith. 41: 185–202, 1982. (French)Google Scholar
  6. 6.
    Bilyk, D., Lacey, M.T., and Vagharshakyan, A.: On the small ball inequality in all dimensions. J. Funct. Anal. 254: 2470–2502, 2008.Google Scholar
  7. 7.
    Cools, R., Kuo, F.Y. and Nuyens, D.: Constructing embedded lattice rules for multivariable integration. SIAM J. Sci. Comput. 28: 2162–2188, 2006.Google Scholar
  8. 8.
    Cools, R. and Lyness, J.N.: Three- and four-dimensional K-optimal lattice rules of moderate trigonometric degree. Math. Comp. 70: 1549–1567, 2001.Google Scholar
  9. 9.
    Cristea, L.L., Dick, J., Leobacher, G. and Pillichshammer, F.: The tent transformation can improve the convergence rate of quasi-Monte Carlo algorithms using digital nets. Numer. Math. 105: 413–455, 2007.Google Scholar
  10. 10.
    Dick, J.: On the convergence rate of the component-by-component construction of good lattice rules. J. Complexity 20: 493–522, 2004.Google Scholar
  11. 11.
    Dick, J.: The construction of extensible polynomial lattice rules with small weighted star discrepancy. Math. Comp. 76: 2077–2085, 2007.Google Scholar
  12. 12.
    Dick, J.: Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal. 46: 1519–1553, 2008.Google Scholar
  13. 13.
    Dick, J., Kritzer, P., and Kuo, F.Y.: Approximation of functions using digital nets. In: Monte Carlo and Quasi-Monte Carlo Methods 2006, pages 275–297, Springer, Berlin, 2008.Google Scholar
  14. 14.
    Dick, J., Kritzer, P., Leobacher, G. and Pillichshammer, F.: Constructions of general polynomial lattice rules based on the weighted star discrepancy. Finite Fields Appl. 13: 1045–1070, 2007.Google Scholar
  15. 15.
    Dick, J., Kritzer, P., Pillichshammer, F. and Schmid, W. Ch.: On the existence of higher order polynomial lattices based on a generalized figure of merit. J. Complexity 23: 581–593, 2007.Google Scholar
  16. 16.
    Dick, J., Kuo, F.Y., Pillichshammer, F. and Sloan, I.H.: Construction algorithms for polynomial lattice rules for multivariate integration. Math. Comp. 74: 1895–1921, 2005.Google Scholar
  17. 17.
    Dick, J., Larcher, G., Pillichshammer, F. and Woźniakowski, H.: Exponential convergence and tractability of multivariate integration for Korobov spaces. Math. Comp. 80: 905–930, 2011.Google Scholar
  18. 18.
    Dick, J., Leobacher, G. and Pillichshammer, F.: Construction algorithms for digital nets with low weighted star discrepancy. SIAM J. Numer. Anal. 43: 76–95, 2005.Google Scholar
  19. 19.
    Dick, J., Niederreiter, H. and Pillichshammer, F.: Weighted star discrepancy of digital nets in prime bases. In: Monte Carlo and Quasi-Monte Carlo Methods 2004, pages 77–96, Springer, Berlin, 2006.Google Scholar
  20. 20.
    Dick, J. and Pillichshammer, F.: Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces. J. Complexity 21: 149–195, 2005.Google Scholar
  21. 21.
    Dick, J. and Pillichshammer, F.: Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattices rules. J. Complexity 23: 436–453, 2007.Google Scholar
  22. 22.
    Dick, J. and Pillichshammer, F.: Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, 2010.Google Scholar
  23. 23.
    Dick, J., Pillichshammer, F. and Waterhouse, B.J.: The construction of good extensible rank-1 lattices. Math. Comp. 77: 2345–2373, 2008.Google Scholar
  24. 24.
    Dick, J., Sloan, I.H., Wang, X. and Woźniakowski, H.: Liberating the weights. J. Complexity 20: 593–623, 2004.Google Scholar
  25. 25.
    Dick, J., Sloan, I.H., Wang, X. and Woźniakowski, H.: Good lattice rules in weighted Korobov spaces with general weights. Numer. Math. 103: 63–97, 2006.Google Scholar
  26. 26.
    Drmota, M. and Tichy, R.F.: Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651, Springer, Berlin, 1997.Google Scholar
  27. 27.
    Faure, H.: Discrépance de suites associées à un système de numération (en dimension s). Acta Arith. 41:337–351, 1982. (French).Google Scholar
  28. 28.
    Gnewuch, M., Srivastav, A. and Winzen, C.: Finding optimal volume subintervals with k-points and calculating the star discrepancy are NP-hard problems. J. Complexity 25: 115–127, 2009.Google Scholar
  29. 29.
    Greslehner, J. and Pillichshammer, F.: Discrepancy of higher rank polynomial lattice point sets. Monte Carlo Methods Appl. 18: 79–108, 2012.Google Scholar
  30. 30.
    Hellekalek, P.: Digital (t, m, s)-nets and the spectral test. Acta Arith. 105: 197–204, 2002.Google Scholar
  31. 31.
    Hickernell, F.J.: Obtaining O(N  − 2 + ε) convergence for lattice quadrature rules. In: Monte Carlo and Quasi-Monte Carlo Methods 2000, pages 274–289, Springer, Berlin, 2002.Google Scholar
  32. 32.
    Hickernell, F.J. and Hong, H.S.: Computing multivariate normal probabilities using rank-1 lattice sequences. In: Proceedings of the Workshop on Scientific Computing (Hong Kong), pages 209–215, Springer, Singapore, 1997.Google Scholar
  33. 33.
    Hickernell, F.J., Hong, H.S., L’Ecuyer, P. and Lemieux, C.: Extensible lattice sequences for quasi-Monte Carlo quadrature. SIAM J. Sci. Coput. 22: 1117-1138, 2000.Google Scholar
  34. 34.
    Hickernell, F.J. and Niederreiter, H.: The existence of good extensible rank-1 lattices. J. Complexity 19: 286–300, 2003.Google Scholar
  35. 35.
    Hinrichs, A., Pillichshammer, F. and Schmid, W. Ch.: Tractability properties of the weighted star discrepancy. J. Complexity 24: 134–143, 2008.Google Scholar
  36. 36.
    Hlawka, E.: Zur angenäherten Berechnung mehrfacher Integrale. Monatsh. Math. 66: 140–151, 1962. (German)Google Scholar
  37. 37.
    Joe, S.: Construction of good rank-1 lattice rules based on the weighted star discrepancy. In: Monte Carlo and Quasi-Monte Carlo Methods 2004, pages 181–196, Springer, Berlin, 2006.Google Scholar
  38. 38.
    Korobov, N.M.: The approximate computation of multiple integrals. Dokl. Akad. Nauk SSSR 124: 1207–1210, 1959. (Russian)Google Scholar
  39. 39.
    Korobov, N.M.: Number-theoretic methods in approximate analysis. Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963. (Russian)Google Scholar
  40. 40.
    Korobov, N.M.: On the calculation of optimal coefficients. Soviet Math. Dokl. 26: 590–593, 1982.Google Scholar
  41. 41.
    Kritzer, P. and Pillichshammer, F.: Constructions of general polynomial lattices for multivariate integration. Bull. Austral. Math. Soc. 76: 93–110, 2007.Google Scholar
  42. 42.
    Kritzer, P. and Pillichshammer, F.: A lower bound on a quantity related to the quality of polynomial lattices. Funct. Approx. Comment. Math. 45: 125–137, 2011Google Scholar
  43. 43.
    Kritzer, P. and Pillichshammer, F.: Low discrepancy polynomial lattice point sets. Submitted, 2011.Google Scholar
  44. 44.
    Kuipers, L. and Niederreiter, H.: Uniform Distribution of Sequences. John Wiley, New York, 1974; reprint, Dover Publications, Mineola, NY, 2006.Google Scholar
  45. 45.
    Kuo, F. Y.: Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complexity 19: 301–320, 2003.Google Scholar
  46. 46.
    Kuo, F.Y., Sloan, I.H. and Woźniakowski, H.: Lattice rules for multivariate approximation in the worst case setting. In: Monte Carlo and Quasi-Monte Carlo Methods 2004, pages 289–330, Springer, Berlin, 2006.Google Scholar
  47. 47.
    Kuo, F.Y., Sloan, I.H. and Woźniakowski, H.: Lattice rule algorithms for multivariate approximation in the average case setting. J. Complexity 24: 283–323, 2008.Google Scholar
  48. 48.
    Larcher, G.: On the distribution of sequences connected with good lattice points. Monatsh. Math. 101: 135–150, 1986.Google Scholar
  49. 49.
    Larcher, G.: A best lower bound for good lattice points. Monatsh. Math. 104: 45–51, 1987.Google Scholar
  50. 50.
    Larcher, G.: Nets obtained from rational functions over finite fields. Acta Arith. 63: 1–13, 1993.Google Scholar
  51. 51.
    Larcher, G., Lauss, A., Niederreiter, H. and Schmid, W. Ch.: Optimal polynomials for (t, m, s)-nets and numerical integration of multivariate Walsh series. SIAM J. Numer. Anal. 33: 2239–2253, 1996.Google Scholar
  52. 52.
    L’Ecuyer, P.: Polynomial integration lattices. In: Monte Carlo and Quasi-Monte Carlo Methods 2002, pages 73–98, Springer, Berlin, 2004.Google Scholar
  53. 53.
    Lemieux, Ch. and L’Ecuyer P.: Randomized polynomial lattice rules for multivariate integration and simulation. SIAM J. Sci. Comput. 24: 1768–1789, 2003.Google Scholar
  54. 54.
    Lyness, J.: Notes on lattice rules. J. Complexity 19: 321–331, 2003.Google Scholar
  55. 55.
    Maize, E.H.: Contributions to the Theory of Error Reduction of Quasi Monte Carlo Methods. Thesis (Ph.D.)The Claremont Graduate University, 162 pp., 1981.Google Scholar
  56. 56.
    Niederreiter, H.: Point sets and sequences with small discrepancy. Monatsh. Math. 104: 273–337, 1987.Google Scholar
  57. 57.
    Niederreiter, H.: Low-discrepancy point sets obtained by digital constructions over finite fields. Czechoslovak Math. J. 42: 143–166, 1992.Google Scholar
  58. 58.
    Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. No. 63 in CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia, 1992.Google Scholar
  59. 59.
    Niederreiter, H.: The existence of good extensible polynomial lattice rules. Monatsh. Math. 139: 295–307, 2003.Google Scholar
  60. 60.
    Niederreiter, H.: Digital nets and coding theory. In: Coding, Cryptography and Combinatorics, pages 247–257, Birkhäuser, Basel, 2004.Google Scholar
  61. 61.
    Niederreiter, H. and Pillichshammer, F.: Construction algorithms for good extensible lattice rules. Constr. Approx. 30: 361–393, 2009.Google Scholar
  62. 62.
    Novak, E. and Woźniakowski, H.: Tractability of Multivariate Problems. Volume I: Linear Information. EMS Tracts in Mathematics, 6. European Mathematical Society (EMS), Zürich, 2008.Google Scholar
  63. 63.
    Novak, E. and Woźniakowski, H.: Tractability of Multivariate Problems. Volume II: Standard Information for Functionals. EMS Tracts in Mathematics, 12. European Mathematical Society (EMS), Zürich, 2010.Google Scholar
  64. 64.
    Nuyens, D. and Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comp. 75: 903–920, 2006.Google Scholar
  65. 65.
    Nuyens, D. and Cools, R.: Fast component-by-component construction, a reprise for different kernels. In: Monte Carlo and Quasi-Monte Carlo Methods 2004, pages 373–387, Springer, Berlin, 2006.Google Scholar
  66. 66.
    Owen, A.B.: Randomly permuted (t, m, s)-nets and (t, s)-sequences. In: Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pages 299–317, Springer, New York, 1995.Google Scholar
  67. 67.
    Pirsic, G., Dick, J. and Pillichshammer, F.: Cyclic digital nets, hyperplane nets, and multivariate integration in Sobolev spaces. SIAM J. Numer. Anal. 44: 385–411, 2006.Google Scholar
  68. 68.
    Roth, K.F.: On irregularities of distribution. Mathematika 1: 73–79, 1954.Google Scholar
  69. 69.
    Šarygin, I.F.: Lower bounds for the error of quadrature formulas on classes of functions. Ž. Vyčisl. Mat. i Mat. Fiz. 3: 370–376, 1963. (Russian).Google Scholar
  70. 70.
    Schmid, W. Ch.: Improvements and extensions of the “Salzburg Tables” by using irreducible polynomials. In: Monte Carlo and Quasi-Monte Carlo Methods 1998, pages 436–447, Springer, Berlin, 2000.Google Scholar
  71. 71.
    Schmidt, W.M.: Irregularities of distribution VII. Acta Arith. 21: 45–50, 1972.Google Scholar
  72. 72.
    Sloan, I.H. and Joe, S.: Lattice Methods for Multiple Integration. Clarendon Press, Oxford, 1994.Google Scholar
  73. 73.
    Sloan, I.H. and Reztsov, A.V.: Component-by-component construction of good lattice rules. Math. Comp. 71: 263–273, 2002.Google Scholar
  74. 74.
    Sloan, I.H. and Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J. Complexity 14: 1–33, 1998.Google Scholar
  75. 75.
    Sloan, I.H. and Woźniakowski, H.: Tractability of multivariate integration for weighted Korobov classes. J. Complexity 17: 697–721, 2001.Google Scholar
  76. 76.
    Sloan, I.H. and Woźniakowski, H.: Tractability of integration in non-periodic and periodic weighted tensor product Hilbert spaces. J. Complexity 18: 479–499, 2002.Google Scholar
  77. 77.
    Sobol’, I.M.: Distribution of points in a cube and approximate evaluation of integrals. Z̆. Vyčisl. Mat. i Mat. Fiz. 7: 784–802, 1967. (Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für FinanzmathematikUniversität LinzLinzAustria

Personalised recommendations