Asymptotic Equivalence Between Boundary Perturbations and Discrete Exit Times: Application to Simulation Schemes

  • E. Gobet
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 23)


We present two problems that are apparently disconnected, and we show how they are actually related to each other. First, we investigate the sensitivity of the expectation of functionals of diffusion process stopped at the exit from a domain, as the boundary is perturbed. Second, we analyze the discrete monitoring bias when simulating stopped diffusions, emphasizing the role of overshoot asymptotics. Then, we derive a simple and accurate scheme for simulating stopped diffusions.


Brownian Motion Exit Time Euler Scheme Barrier Option Boundary Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been partly done when the author was affiliated to Grenoble INP-Ensimag. The author is grateful to Grenoble Institute of Technology (BQR grant entitled Monte Carlo) and to the Chair Risques Financiers of the Fondation du Risque for their financial support.

The author also thanks the two referees for their valuable comments and suggestions.


  1. 1.
    G. Allaire. Shape optimization by the homogeneization method. Springer Verlag, New-York, 1st edition, 2002.Google Scholar
  2. 2.
    L. Andersen and R. Brotherton-Ratcliffe. Exact exotics. Risk, 9:85–89, 1996.Google Scholar
  3. 3.
    P. Baldi. Exact asymptotics for the probability of exit from a domain and applications to simulation. The Annals of Probability, 23(4):1644–1670, 1995.Google Scholar
  4. 4.
    P. Baldi and L. Caramellino. Asymptotics of hitting probabilities for general one-dimensional diffusions. Annals of Applied Probability, 12:1071–1095, 2002.Google Scholar
  5. 5.
    V. Bally and D. Talay. The law of the Euler scheme for stochastic differential equations: I. Convergence rate of the distribution function. Probab. Theory Related Fields, 104-1:43–60, 1996.Google Scholar
  6. 6.
    T.R. Bielecki and M. Rutkowski. Credit risk: modelling, valuation and hedging. Springer Finance. Springer-Verlag, Berlin, 2002.Google Scholar
  7. 7.
    P.P. Boyle and S.H. Lau. Bumping up against the barrier with the binomial method. Journal of Derivatives, 1:6–14, 1994.Google Scholar
  8. 8.
    M. Broadie, P. Glasserman, and S. Kou. A continuity correction for discrete barrier options. Mathematical Finance, 7:325–349, 1997.Google Scholar
  9. 9.
    M. Broadie, P. Glasserman, and S. Kou. Connecting discrete and continuous path-dependent options. Finance and Stochastics, 3:55–82, 1999.Google Scholar
  10. 10.
    B. Casella and G.O. Roberts. Exact Monte Carlo simulation of killed diffusions. Adv. in Appl. Probab., 40(1):273–291, 2008.Google Scholar
  11. 11.
    P. Cattiaux. Hypoellipticité et hypoellipticité partielle pour les diffusions avec une condition frontière. Ann. Inst. H. Poincaré Probab. Statist., 22(1):67–112, 1986.Google Scholar
  12. 12.
    J.T. Chang and Y. Peres. Ladder heights, Gaussian random walks and the Riemann zeta function. Ann. Probab., 25(2):787–802, 1997.Google Scholar
  13. 13.
    C. Costantini, E. Gobet, and N. El Karoui. Boundary sensitivities for diffusion processes in time dependent domains. Applied Mathematics and Optimization, 54(2):159–187, 2006.Google Scholar
  14. 14.
    E.H.A. Dia and D. Lamberton. Continuity correction for barrier options in jump-diffusion models. Technical report, HAL:,2010.
  15. 15.
    C.D. Fuh, S.F. Luo, and J.F. Yen. Pricing discrete path-dependent options under a double exponential jump-diffusion model. Technical report, 2011.Google Scholar
  16. 16.
    E. Gobet. Euler schemes for the weak approximation of killed diffusion. Stochastic Processes and their Applications, 87:167–197, 2000.Google Scholar
  17. 17.
    E. Gobet. Euler schemes and half-space approximation for the simulation of diffusions in a domain. ESAIM: Probability and Statistics, 5:261–297, 2001.Google Scholar
  18. 18.
    E. Gobet. Handbook of Numerical Analysis, Vol. XV, Special Volume: Mathematical Modeling and Numerical Methods in Finance, chapter Advanced Monte Carlo methods for barrier and related exotic options, pages 497–528. Elsevier, Netherlands: North-Holland, 2009.Google Scholar
  19. 19.
    E. Gobet and S. Menozzi. Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme. Stochastic Processes and their Applications, 112(2):201–223, 2004.Google Scholar
  20. 20.
    E. Gobet and S. Menozzi. Discrete sampling of functionals of Itô processes. Séminaire de probabilités XL – Lecture Notes in Mathematics 1899 Springer Verlag, pages 355–374, 2007.Google Scholar
  21. 21.
    E. Gobet and S. Menozzi. Stopped diffusion processes: boundary corrections and overshoot. Stochastic Processes and Their Applications, 120:130–162, 2010.Google Scholar
  22. 22.
    K.M. Jansons and G.D. Lythe. Multidimensional exponential timestepping with boundary test. SIAM Journal on Scientific Computing, 27(3):793–808, 2005.Google Scholar
  23. 23.
    C. Labart. EDSR: analyse de discrétisation et résolution par méthodes de Monte Carlo adaptatives; Perturbation de domaines pour les options américaines. PhD thesis, Ecole Polytechnique,, 2007.
  24. 24.
    T.L. Lai, Y. Yao, and F. Aitsahlia. Corrected random walk approximations to free boundary problems in optimal stopping. Adv. in Appl. Probab., 39(3):753–775, 2007.Google Scholar
  25. 25.
    G.M. Lieberman. Second order parabolic differential equations. World Scientific Publishing Co. Inc., River Edge, NJ, 1996.Google Scholar
  26. 26.
    D. Nualart. Malliavin calculus and related topics. Springer Verlag, second edition, 2006.Google Scholar
  27. 27.
    E.J. Pauwels. Smooth first-passage densities for one-dimensional diffusions. Journal of applied probability, 24(2):370–377, 1987.Google Scholar
  28. 28.
    P.V. Shevchenko. Addressing the bias in Monte Carlo pricing of multi-asset options with multiple barriers through discrete sampling. Journal of Computational Finance, 6(3):1–20, 2003.Google Scholar
  29. 29.
    D. Siegmund. Corrected diffusion approximations in certain random walk problems. Adv. in Appl. Probab., 11(4):701–719, 1979.Google Scholar
  30. 30.
    D. Siegmund. Sequential Analysis. Springer, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Ecole PolytechniqueCMAPPalaiseau CedexFrance

Personalised recommendations