A Global Adaptive Quasi-Monte Carlo Algorithm for Functions of Low Truncation Dimension Applied to Problems from Finance

  • Dirk Nuyens
  • Benjamin J. Waterhouse
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 23)


We show how to improve the performance of the quasi-Monte Carlo method for solving some pricing problems from financial engineering. The key point of the new algorithm, coined “GELT”, is an adaptive re-ordering of the point set so that the function is sampled more frequently in the regions where there is greater variation. The adaptivity only operates on the first few dimensions of the integrand and we show how to explicitly obtain the points of a digital sequence falling into boxes into these first few dimensions. This is effective as the problem is first transformed into having “low truncation dimension”. In general it is assumed that finance problems have low effective dimension. In addition we make use of a so-called “sniffer function” to cope with the discontinuity in the integrand function. Numerical results with the new adaptive algorithm are presented for pricing a digital Asian option, an Asian option and an Asian option with an up-and-out barrier.


Monte Carlo Adaptive Algorithm Unit Cube Contingent Claim Brownian Bridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to Prof. Ian H. Sloan for useful discussions related to this paper and very much appreciated the careful comments and questions from the two anonymous referees. The first author is a fellow of the Research Foundation Flanders (FWO) and is grateful to the University of New South Wales where large parts of this paper were written; and therefore also thanks the Australian Research Council (ARC) for support.


  1. 1.
    F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of Political Economy, 81(3):637–654, 1973.Google Scholar
  2. 2.
    R. E. Caflisch, W. Morokoff, and A. B. Owen. Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension. J. Comput. Finance, 1(1):27–46, 1997.Google Scholar
  3. 3.
    R. Cools and A. Haegemans. Algorithm 824: CUBPACK: A package for automatic cubature; framework description. ACM Trans. Math. Software, 29(3):287–296, 2003.Google Scholar
  4. 4.
    R. Cools, F. Y. Kuo, and D. Nuyens. Constructing embedded lattice rules for multivariate integration. SIAM J. Sci. Comput., 28(6):2162–2188, 2006.Google Scholar
  5. 5.
    J. Dick and F. Pillichshammer. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, 2010.Google Scholar
  6. 6.
    H. Faure. Discrépance de suites associées à un système de numération (en dimension s). Acta Arith., 41(4):337–351, 1982.Google Scholar
  7. 7.
    M. B. Giles, F. Y. Kuo, I. H. Sloan, and B. J. Waterhouse. Quasi-Monte Carlo for finance applications. ANZIAM Journal, 50:308–323, 2008.Google Scholar
  8. 8.
    P. Glasserman. Monte Carlo Methods in Financial Engineering, volume 53 of Stochastic Modelling and Applied Probability. Springer-Verlag, 2003.Google Scholar
  9. 9.
    L. Grünschloß, M. Raab, and A. Keller. Enumerating quasi-Monte Carlo point sequences in elementary intervals. In H. Woźniakowski and L. Plaskota, editors, Monte Carlo and Quasi-Monte Carlo Methods 2010. Springer-Verlag, 2012. ibid.Google Scholar
  10. 10.
    J. Imai and K. S. Tan. A general dimension reduction technique for derivative pricing. J. Comput. Finance, 10(2):129–155, 2006.Google Scholar
  11. 11.
    J. Imai and K. S. Tan. An accelerating quasi-Monte Carlo method for option pricing under the generalized hyperbolic Lévy process. SIAM J. Sci. Comput., 31(3):2282–2302, 2009.Google Scholar
  12. 12.
    A. Keller. Myths of computer graphics. In Niederreiter and Talay [17], pages 217–243.Google Scholar
  13. 13.
    P. L’Écuyer and C. Lemieux. Recent advances in randomized quasi-Monte Carlo methods. In M. Dror, P. L’Écuyer, and F. Szidarovszki, editors, Modeling Uncertainty: An Examination of Its Theory, Methods, and Applications, pages 419–474. Kluwer Academic, 2002.Google Scholar
  14. 14.
    P. G. Lepage. A new algorithm for adaptive multidimensional integration. J. Comput. Phys., 27(2):192–203, 1978.Google Scholar
  15. 15.
    R. C. Merton. Theory of rational option pricing. Bell Journal of Economics and Management Science, 4(1):141–183, 1973.Google Scholar
  16. 16.
    H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. Number 63 in Regional Conference Series in Applied Mathematics. SIAM, 1992.Google Scholar
  17. 17.
    H. Niederreiter and D. Talay, editors. Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer-Verlag, 2006.Google Scholar
  18. 18.
    A. B. Owen. Necessity of low effective dimension. Technical report, Dept. of Statistics, Stanford University, 2002.Google Scholar
  19. 19.
    A. Papageorgiou. The Brownian bridge does not offer a consistent advantage in quasi-Monte Carlo integration. J. Complexity, 18(1):171–186, 2002.Google Scholar
  20. 20.
    W. H. Press and G. R. Farrar. Recursive stratified sampling for multidimensional Monte Carlo integration. Computers in Physics, 4(2):190–195, 1990.Google Scholar
  21. 21.
    R. Schürer. Adaptive quasi-Monte Carlo integration based on MISER and VEGAS. In H. Niederreiter, editor, Monte Carlo and Quasi-Monte Carlo Methods 2002, pages 393–406. Springer-Verlag, 2004.Google Scholar
  22. 22.
    R. Schürer and W. C. Schmid. MINT: A database for optimal net parameters. In Niederreiter and Talay [17], pages 457–469.Google Scholar
  23. 23.
    I. H. Sloan and H. Woźniakowski. When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J. Complexity, 14(1):1–33, 1998.Google Scholar
  24. 24.
    P. van Dooren and L. de Ridder. An adaptive algorithm for numerical integration over an n-dimensional cube. J. Comput. Appl. Math., 2(3):207–217, 1976.Google Scholar
  25. 25.
    X. Wang and I. H. Sloan. Why are high-dimensional finance problems often of low effective dimension? SIAM J. Sci. Comput., 27(1):159–183, 2005.Google Scholar
  26. 26.
    X. Wang and I. H. Sloan. Efficient weighted lattice rules with applications to finance. SIAM J. Sci. Comput., 28(2):728–750, 2006.Google Scholar
  27. 27.
    X. Wang and I. H. Sloan. Quasi-Monte Carlo methods in financial engineering: An equivalence principle and dimension reduction. Operations Res., 59(1):80–95, 2011.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Computer ScienceK.U.LeuvenHeverleeBelgium
  2. 2.School of Mathematics and StatisticsUniversity of New South WalesSydneyAustralia

Personalised recommendations