Numerical Simulation of the Drop Size Distribution in a Spray

  • Christian Lécot
  • Moussa Tembely
  • Arthur Soucemarianadin
  • Ali Tarhini
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 23)


Classical methods of modeling predict a steady-state drop size distribution by using empirical or analytical approaches. In the present analysis, we use the maximum of entropy method as an analytical approach for producing the initial data; then we solve the coagulation equation to approximate the evolution of the drop size distribution. This is done by a quasi-Monte Carlo simulation of the conservation form of the equation. We compare the use of pseudo-random and quasi-random numbers in the simulation. It is shown that the proposed method is able to predict experimental phenomena observed during spray generation.


Monte Carlo Star Discrepancy Conservation Form Drop Size Distribution Generalize Gamma Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Babinsky, E., Sojka, P.E.: Modeling drop size distributions. Progress in Energy and Combustion Science 28, 303–329 (2002)Google Scholar
  2. 2.
    Dobre, M., Bolle, L.: Practical design of ultrasonic spray devices: experimental testing of several atomizer geometries. Experimental Thermal and Fluid Science 26, 205–211 (2002)Google Scholar
  3. 3.
    Drake, R.L.: A general mathematical survey of the coagulation equation. In: Hidy, G.M., Brock, J.R. (eds.) Topics in Current Aerosol Research, Part 2, pp. 201–376. Pergamon Press, Oxford (1972)Google Scholar
  4. 4.
    Dumouchel, C.: A new formulation of the maximum entropy formalism to model liquid spray drop-size distribution. Particle and Particle Systems Characterization 23, 468–479 (2006)Google Scholar
  5. 5.
    Dumouchel, C.: The maximum entropy formalism and the prediction of liquid spray drop-size distribution. Entropy 11, 713–747 (2009)Google Scholar
  6. 6.
    Dumouchel, C., Sindayihebura, D., Bolle, L.: Application of the maximum entropy formalism on sprays produced by ultrasonic atomizers. Particle and Particle Systems Characterization 20, 150–161 (2003)Google Scholar
  7. 7.
    Kocamustafaogullari, G., Ishii, M.: Foundation of the interfacial area transport equation and its closure relations. International Journal of Heat and Mass Transfer 38, 481–493 (1995)Google Scholar
  8. 8.
    Lécot, C., Tarhini, A.: A quasi-stochastic simulation of the general dynamics equation for aerosols. Monte Carlo Methods and Applications 13, 369–388 (2007)Google Scholar
  9. 9.
    Lécot, C., Wagner, W.: A quasi-Monte Carlo scheme for Smoluchowski’s coagulation equation. Mathematics of Computation 73, 1953–1966 (2004)Google Scholar
  10. 10.
    Lienhard, J.H., Meyer, P.L.: A physical basis for the generalized gamma distribution. Quarterly of Applied Mathematics 25, 330–334 (1967)Google Scholar
  11. 11.
    Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods, SIAM CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. SIAM, Philadelphia (1992)Google Scholar
  12. 12.
    Ramabhadran, T.E., Peterson, T.W., Seinfeld, J.H.: Dynamics of aerosol coagulation and condensation. American Institute of Chemical Engineers Journal 22, 840–851 (1976)Google Scholar
  13. 13.
    Tarhini, A.: Analyse numérique des méthodes quasi-Monte Carlo appliquées aux modèles d’agglomération. PhD thesis, Université de Savoie (2008)Google Scholar
  14. 14.
    Tembely, M.: Étude de l’atomisation induite par interactions fluide-structure. PhD thesis, Université de Grenoble (2010)Google Scholar
  15. 15.
    Tembely, M., Lécot, C., Soucemarianadin, A.: Prediction and evolution of drop-size distribution for a new ultrasonic atomizer. Applied Thermal Engineering 31, 656–667 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Lécot
    • 1
  • Moussa Tembely
    • 2
  • Arthur Soucemarianadin
    • 2
  • Ali Tarhini
    • 3
  1. 1.Laboratoire de MathématiquesUMR 5127 CNRS & Université de SavoieLe Bourget-du-Lac CedexFrance
  2. 2.Laboratoire des Écoulements Géophysiques et Industriels, UMR 5519 UJF & CNRS & INPGUniversité de GrenobleSaint Martin d’HèresFrance
  3. 3.Département de MathématiquesUniversité Libanaise, Faculté des Sciences IHadath – BeyrouthLiban

Personalised recommendations