Skip to main content

Parallel Quasi-Monte Carlo Integration by Partitioning Low Discrepancy Sequences

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 23))

Abstract

A general concept for parallelizing quasi-Monte Carlo methods is introduced. By considering the distribution of computing jobs across a multiprocessor as an additional problem dimension, the straightforward application of quasi-Monte Carlo methods implies parallelization. The approach in fact partitions a single low-discrepancy sequence into multiple low-discrepancy sequences. This allows for adaptive parallel processing without synchronization, i.e. communication is required only once for the final reduction of the partial results. Independent of the number of processors, the resulting algorithms are deterministic, and generalize and improve upon previous approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Actually, any quadrature rule could be chosen.

  2. 2.

    The partitions can also be scaled to fill the (s + 1)-dimensional unit cube again. In other words, one could reuse the component chosen for selecting samples for each job, which is more efficient since one component less must be generated. Reformulating Eq. 2 accordingly, requires only the generation of s-dimensional samples:

    $${S}_{j} \approx \frac{1} {n}{\sum \nolimits }_{i=0}^{n-1}{\chi }_{ j}(N \cdot {x}_{i,c}) \cdot f({x}_{i,1},\ldots ,{x}_{i,c-1},N \cdot {x}_{i,c} - j,{x}_{i,c+1},\ldots ,{x}_{i,s})$$

    However, this variant is not recommended, because the resulting ensemble of samples may not be well-stratified in the dimension c.

References

  1. Abramov, G.: US patent #6,911,976: System and method for rendering images using a strictly-deterministic methodology for generating a coarse sequence of sample points (2002)

    Google Scholar 

  2. Bromley, B.: Quasirandom number generators for parallel Monte Carlo algorithms. J. Parallel Distrib. Comput. 38(1), 101–104 (1996)

    Google Scholar 

  3. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press (2009)

    Google Scholar 

  4. Entacher, K., Schell, T., Schmid, W., Uhl, A.: Defects in parallel Monte Carlo and quasi-Monte Carlo integration using the leap-frog technique. Parallel Algorithms Appl. pp. 13–26 (2003)

    Google Scholar 

  5. Faure, H.: Good permutations for extreme discrepancy. J. Number Theory 42, 47–56 (1992)

    Google Scholar 

  6. Grünschloß, L.: Motion Blur. Master’s thesis, Universität Ulm (2008)

    Google Scholar 

  7. Hickernell, F., Hong, H., L’Ecuyer, P., Lemieux, C.: Extensible lattice sequences for quasi-Monte Carlo quadrature. SIAM J. Sci. Comput. 22, 1117–1138 (2000)

    Google Scholar 

  8. Jensen, H.: Realistic Image Synthesis Using Photon Mapping. AK Peters (2001)

    Google Scholar 

  9. Jez, P., Uhl, A., Zinterhof, P.: Applications and parallel implementation of QMC integration. In: R. Trobec, M. Vajteršic, P. Zinterhof (eds.) Parallel Computing, pp. 175–215. Springer (2008)

    Google Scholar 

  10. Keller, A.: Myths of computer graphics. In: H. Niederreiter (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 217–243. Springer (2006)

    Google Scholar 

  11. Keller, A., Grünschloß, L., Droske, M.: Quasi-Monte Carlo progressive photon mapping. In: L. Plaskota, H. Woźniakowski (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 501–511. Springer (2012)

    Google Scholar 

  12. Kocis, L., Whiten, W.: Computational investigations of low-discrepancy sequences. ACM Trans. Math. Softw. 23(2), 266–294 (1997)

    Google Scholar 

  13. Kollig, T., Keller, A.: Efficient multidimensional sampling. Computer Graphics Forum (Proc. Eurographics 2002) 21(3), 557–563 (2002)

    Google Scholar 

  14. Larcher, G., Pillichshammer, F.: Walsh series analysis of the L 2-discrepancy of symmetrisized point sets. Monatsh. Math. 132, 1–18 (2001)

    Google Scholar 

  15. Matoušek, J.: On the L 2-discrepancy for anchored boxes. J. Complexity 14(4), 527–556 (1998)

    Google Scholar 

  16. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    Google Scholar 

  17. Ökten, G., Srinivasan, A.: Parallel quasi-Monte Carlo methods on a heterogeneous cluster. In: K.T. Fang, F. Hickernell, H. Niederreiter (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 406–421. Springer (2002)

    Google Scholar 

  18. Schmid, W., Uhl, A.: Parallel quasi-Monte Carlo integration using (t, s)-sequences. In: ParNum ’99: Proceedings of the 4th International ACPC Conference Including Special Tracks on Parallel Numerics and Parallel Computing in Image Processing, Video Processing, and Multimedia, pp. 96–106. Springer-Verlag, London, UK (1999)

    Google Scholar 

  19. Schmid, W., Uhl, A.: Techniques for parallel quasi-Monte Carlo integration with digital sequences and associated problems. Mathematics and Computers in Simulation 55(1–3), 249–257 (2001)

    Google Scholar 

  20. Schwarz, H., Köckler, N.: Numerische Mathematik. 6. überarb. Auflage, Vieweg + Teubner (2008)

    Google Scholar 

  21. Sobol’, I.: On the Distribution of points in a cube and the approximate evaluation of integrals. Zh. vychisl. Mat. mat. Fiz. 7(4), 784–802 (1967)

    Google Scholar 

  22. Wächter, C.: Quasi-Monte Carlo Light Transport Simulation by Efficient Ray Tracing. Ph.D. thesis, Universität Ulm (2008)

    Google Scholar 

  23. Zaremba, S.: La discrépance isotrope et l’intégration numérique. Ann. Mat. Pura Appl. 87, 125–136 (1970)

    Google Scholar 

Download references

Acknowledgements

This work has been dedicated to Stefan Heinrich’s 60th birthday. The authors thank Matthias Raab for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Keller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keller, A., Grünschloß, L. (2012). Parallel Quasi-Monte Carlo Integration by Partitioning Low Discrepancy Sequences. In: Plaskota, L., Woźniakowski, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2010. Springer Proceedings in Mathematics & Statistics, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27440-4_27

Download citation

Publish with us

Policies and ethics