Skip to main content

Thio Effects as a Tool for Mechanistic Studies of the Cleavage of RNA Phosphodiester Bonds: The Chemical Basis

  • Chapter
  • First Online:
From Nucleic Acids Sequences to Molecular Medicine

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Replacement of one of the phosphorus-bound oxygen atoms with sulfur has extensively been used for elucidation of mechanistic details of the cleavage of RNA phosphodiester bonds by ribozymes. Since sulfur atom is larger, less electronegative, and more readily polarizable than oxygen, this substitution affects in many ways metal ion binding and the ease of formation and breakdown of the phosphorane intermediate/transition state obtained by the attack of the entering hydroxyl group on the phosphorus atom. The factors that may be altered by thio substitution include the geometry of the phosphorane intermediate, relative apicophilicities of the ligands, the leaving group property, hydrogen bonding, solvation, and the affinity to metal ions. Experimental studies and theoretical calculations on various model systems have been undertaken to obtain a solid chemical basis for the mechanistic interpretations based on thio effects in ribozyme catalysis. The results of such studies are surveyed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almer H, Strömberg R (1991) Intramolecular transesterification in thiophosphate-analogues of an RNA-dimer. Tetrahedron Lett 32:3723–3726

    Article  CAS  Google Scholar 

  • Almer H, Strömberg R (1996) Base catalysis and leaving group dependence in intramolecular alcoholysis of uridine 3′-(Aryl phosphorothioate)s. J Am Chem Soc 118:7921–7928

    Article  CAS  Google Scholar 

  • Ba-Saif SA, Waring MA, Williams A (1990) Single transition state in the transfer of a neutral phosphoryl group between phenoxide ion nucleophiles in aqueous solution. J Am Chem Soc 112:8115–8120

    Article  CAS  Google Scholar 

  • Brown DM, Todd AR (1955) Nucleic acids. Annu Rev Biochem 24:311–338

    Article  PubMed  CAS  Google Scholar 

  • Catrina IE, Hengge AC (1999) Comparisons of phosphorothioate and phosphate monoester transfer reactions: activation parameters, solvent effects, and the effect of metal ions. J Am Chem Soc 121:2156–2163

    Article  CAS  Google Scholar 

  • Chen Y, Li X, Gegenheimer P (1997) Ribonuclease P catalysis requires Mg2+ coordinated to the pro-R P oxygen of the scissile bond. Biochemistry 36:2425–2438

    Article  PubMed  CAS  Google Scholar 

  • Christian EL, Kaye NM, Harris ME (2000) Helix P4 is a divalent metal ion binding site in the conserved core of the ribonuclease P ribozyme. RNA 6:511–519

    Article  PubMed  CAS  Google Scholar 

  • Christian EL, Kaye NM, Harris ME (2002) Evidence for a polynuclear metal ion binding site in the catalytic domain of ribonuclease P RNA. EMBO J 21:2253–2262

    Article  PubMed  CAS  Google Scholar 

  • Cox JR Jr, Ramsey OB (1964) Mechanisms of nucleophilic substitution in phosphate esters. Chem Rev 64:317–351

    Article  CAS  Google Scholar 

  • Dantzman CL, Kiessling LL (1996) Reactivity of a 2′-thio nucleotide analog. J Am Chem Soc 118:11715–11719

    Article  CAS  Google Scholar 

  • Davis AM, Hall AD, Williams A (1988) Charge description of base-catalyzed alcoholysis of aryl phosphodiesters: a ribonuclease model. J Am Chem Soc 110:5105–5108

    Article  CAS  Google Scholar 

  • Derrick WB, Greef CH, Caruthers MH et al (2000) Hammerhead cleavage of the phosphorodithioate linkage. Biochemistry 39:4947–4954

    Article  PubMed  CAS  Google Scholar 

  • Elzagheid MI, Oivanen M, Klika KD et al (1999) Hydrolytic reactions of 3′-deoxy-3′-thioinosylyl(3′,5′)uridine: an RNA dinucleotide containing a 3′-S-phosphorothiolate linkage. Nucleosides Nucleotides 18:2093–2108

    Article  CAS  Google Scholar 

  • Elzagheid MI, Mäki E, Kaukinen U et al (2000a) Preparation, hydrolysis and intramolecular transesterification of 3′-deoxy-3′-thioinosine 3′-S-dimethylphosphorothiolate. Nucleosides Nucleotides Nucleic Acids 19:827–838

    Article  PubMed  CAS  Google Scholar 

  • Elzagheid MI, Mattila K, Oivanen M et al (2000b) Hydrolytic reactions of the cis-methyl ester of 3′-deoxy-3′-thiotymidine 3′,5′-cyclic phosphorothiolate. Eur J Org Chem: 1987–1991

    Google Scholar 

  • Forconi M, Lee J, Lee JK et al (2008) Functional identification of ligands for a catalytic metal ion in group I introns. Biochemistry 74:6883–6894

    Article  Google Scholar 

  • Frederiksen JK, Piccirilli JA (2009) Identification of catalytic metal ion ligands in ribozymes. Methods 49:148–166

    Article  PubMed  CAS  Google Scholar 

  • Gay DC, Hamer NK (1972) Solvolysis of methyl OS-ethylene phosphorothioate. J Chem Soc Perkin Trans 2:929–932

    Google Scholar 

  • Gordon PM, Sontheimer EJ, Piccirilli AJ (2000a) Kinetic characterization of the second step of group II intron splicing: role of metal ions and the cleavage site 2′-OH in catalysis. Biochemistry 39:12939–12952

    Article  PubMed  CAS  Google Scholar 

  • Gordon PM, Sontheimer EJ, Piccirilli JA (2000b) Metal ion catalysis during the exon-ligation step of nuclear pre-mRNA splicing: extending the parallels between the spliceosome and group II introns. RNA 6:199–205

    Article  PubMed  CAS  Google Scholar 

  • Gordon PM, Fong R, Piccirilli JA (2007) A second divalent metal ion in the group II intron reaction center. Chem Biol 14:607–612

    Article  PubMed  CAS  Google Scholar 

  • Gregersen BA, Lopez X, York DM (2004) Hybrid QM/MM study of thio effects in transphosphorylation reactions: the role of solvation. J Am Chem Soc 126:7504–7513

    Article  PubMed  CAS  Google Scholar 

  • Hengge AC (1998) Transfer of the PO 2-3 group. In: Sinnott M (ed) Comprehensive biological catalysis: a mechanistic reference, vol 1. Academic, New York, pp 517–542

    Google Scholar 

  • Herschlag D (1994) Ribonuclease revisited: catalysis via the classical general acid-base mechanism or a triester-like mechanism? J Am Chem Soc 116:11631–11635

    Article  CAS  Google Scholar 

  • Herschlag D, Piccirilli JA, Cech TR (1991) Ribozyme-catalyzed and nonenzymic reactions of phosphate diesters: rate effects upon substitution of sulfur for a nonbridging phosphoryl oxygen atom. Biochemistry 30:4844–4854

    Article  PubMed  CAS  Google Scholar 

  • Hollfelder F, Herschlag D (1995) The nature of the transition state for enzyme-catalyzed phosphoryl transfer. Hydrolysis of O-aryl phosphorothioates by alkaline phosphatase. Biochemistry 34:12255–12264

    Article  PubMed  CAS  Google Scholar 

  • Iyer S, Hengge A (2008) The effects of sulfur substitutions for the nucleophile and bridging oxygen atoms in reactions of hydroxyalkyl phosphate esters. J Org Chem 73:4819–4829

    Article  PubMed  CAS  Google Scholar 

  • Järvinen P, Oivanen M, Lönnberg H (1991) Interconversion and phosphoester hydrolysis of 2′,5′- and 3′,5′-dinucleoside monophosphates: kinetics and mechanisms. J Org Chem 56:5396–5401

    Article  Google Scholar 

  • Knöll R, Bald R, Fürste JP (1997) Complete identification of nonbridging phosphate oxygens involved in hammerhead cleavage. RNA 3:132–140

    PubMed  Google Scholar 

  • Koizumi M, Ohtsuka E (1991) Effects of phosphorothioate and 2-amino groups in hammerhead ribozymes on cleavage rates and Mg2+ binding. Biochemistry 30:5145–5150

    Article  PubMed  CAS  Google Scholar 

  • Kosonen M, Lönnberg H (1995) General and specific acid/base catalysis of the hydrolysis and interconversion of ribonucleoside 2′- and 3′-phosphotriesters: kinetics and mechanisms of the reactions of 5′-O-pivaloyluridine 2′- and 3′-dimethylphosphates. J Chem Soc Perkin Trans 2:1203–1209

    Google Scholar 

  • Kosonen M, Yousefi-Salakdeh E, Strömberg R et al (1997) Mutual isomerization of uridine 2′- and 3′-alkylphosphates and cleavage to a 2′,3′-cyclic phosphate: the effect of the alkyl group on the hydronium- and hydroxide-ion-catalyzed reactions. J Chem Soc Perkin Trans 2:2661–2666

    Google Scholar 

  • Kuusela S, Lönnberg H (1993) Metal ions that promote the hydrolysis of nucleoside phosphoesters do not enhance intramolecular phosphate migration. J Phys Org Chem 6:347–356

    Article  CAS  Google Scholar 

  • Liu X, Reese CB (1995) Uridylyl-(3′ → 5′)-(5′-thiouridine). An exceptionally base-labile di-ribonucleoside phosphate analogue. Tetrahedron Lett 36:3413–3416

    Article  CAS  Google Scholar 

  • Liu X, Reese CB (1996) 3′-Thiouridylyl-(3′ → 5′)-uridine. Tetrahedron Lett 37:925–928

    Article  CAS  Google Scholar 

  • Liu X, Reese CB (2000) Preparation and cleavage reactions of 3′-thiouridylyl-(3′ → 5′)-uridine. J Chem Soc Perkin Trans 1:2227–2236

    Article  Google Scholar 

  • Liu Y, Gregersen BA, Lopez X et al (2005) Density functional study of the in-line mechanism of methanolysis of cyclic phosphate and thiophosphate esters in solution: insight into thio effects in RNA transesterification. J Phys Chem B 109:19987–20003

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Gregersen BA, Hengge A et al (2006) Transesterification thio effects of phosphate diesters: free energy barriers and kinetic and equilibrium isotope effects from density-functional theory. Biochemistry 45:10043–10053

    Article  PubMed  CAS  Google Scholar 

  • Lönnberg H (2011a) Cleavage of RNA phosphodiester bonds by small molecular entities: a mechanistic insight. Org Biomol Chem 9:1687–1703

    Article  PubMed  Google Scholar 

  • Lönnberg T (2011b) Understanding catalysis of phosphate-transfer reactions by large ribozymes. Chem Eur J 17:7140–7153

    Article  PubMed  Google Scholar 

  • Lönnberg T, Korhonen J (2005) Hydrolysis of 2′,3′-O-methyleneadenosin-5′-yl bis-5′-O-methyluridin-3′-yl phosphate: the 2′-hydroxy group stabilizes the phosphorane intermediate, not the departing 3′-oxyanion, by hydrogen bonding. J Am Chem Soc 127:7752–7758

    Article  PubMed  Google Scholar 

  • Lönnberg T, Lönnberg H (2005) Chemical models for ribozyme action. Curr Opin Chem Biol 9:665–673

    Article  PubMed  Google Scholar 

  • Lönnberg H, Strömberg R, Williams A (2004) Compelling evidence for a stepwise mechanism of the alkaline cyclisation of uridine 3′-phosphate esters. Org Biomol Chem 2:2165–2167

    Article  PubMed  Google Scholar 

  • Lönnberg T, Kiiski J, Mikkola S (2005) Hydrolytic stability of 2′,3′-O-methyleneadenos-5′-yl 2′,5′-di-O-methylurid-3′-yl 5′-O-methylurid-3′(2′)-yl phosphate: implications to feasibility of existence of phosphate-branched RNA under physiological conditions. Org Biomol Chem 3:1089–1096

    Article  PubMed  Google Scholar 

  • Lönnberg T, Ora M, Virtanen S et al (2007) Thio effects on the departure of the 3′-linked ribonucleoside from diribonucleoside 3′,3′-phosphorodithioate diesters and triribonucleoside 3′,3′,5′-phosphoromonothioate triesters: implications to ribozyme catalysis. Chem Eur J 13:4614–4627

    Article  PubMed  Google Scholar 

  • Lopez CS, Faza ON, Gregersen BA et al (2004) Pseudorotation of natural and chemically modified biological phosphoranes: implications for RNA catalysis. ChemPhysChem 5:1045–1049

    Article  PubMed  CAS  Google Scholar 

  • Oivanen M, Lönnberg H (1989) Kinetics and mechanisms for reactions of adenosine 2′- and 3′-monophosphates in aqueous acid: competition between phosphate migration, dephosphorylation, and depurination. J Org Chem 54:2556–2560

    Article  CAS  Google Scholar 

  • Oivanen M, Lönnberg H (1990) Kinetics of reactions of pyrimidine nucleoside 2′- and 3′-monophosphates under acidic and neutral conditions: concurrent phosphate migration, dephosphorylation and deamination. Acta Chem Scand B 44:239–242

    Article  CAS  Google Scholar 

  • Oivanen M, Ora M, Almer H et al (1995) Hydrolytic reactions of the diastereomeric phosphoromonothioate analogs of uridylyl(3′,5′)uridine: kinetics and mechanism for desulfurization, phosphoester hydrolysis and transesterification to the 2′,5′-isomers. J Org Chem 60:5620–5627

    Article  CAS  Google Scholar 

  • Oivanen M, Kuusela S, Lönnberg H (1998) Kinetics and mechanisms for the cleavage and isomerization of the phosphodiester bonds of RNA by Brönsted acids and bases. Chem Rev 98:961–990

    Article  PubMed  CAS  Google Scholar 

  • Ora M, Hanski A (2011) Stepwise mechanism of hydroxide-ion catalyzed cyclization of uridine 3′-thiophosphate esters. Helv Chim Acta 94:1563–1574

    Article  CAS  Google Scholar 

  • Ora M, Oivanen M, Lönnberg H (1996a) Hydrolysis and desulfurization of the diastereomeric phosphoromonothioate analogs of uridine 2′,3′-cyclic monophosphate. J Org Chem 61:3951–3955

    Article  PubMed  CAS  Google Scholar 

  • Ora M, Oivanen M, Lönnberg H (1996b) Hydrolytic dethiophosphorylation and desulfurization of the monothioate analogues of uridine monophosphates under acidic conditions. J Chem Soc Perkin Trans 2:771–774

    Google Scholar 

  • Ora M, Oivanen M, Lönnberg H (1997) Phosphoester hydrolysis and intramolecular transesterification of ribonucleoside 2′- and 3′-phosphoromonothioate triesters: kinetics and mechanisms for the reactions of 5′-O-methyluridine 2′- and 3′-dimethylphosphoromonothioates. J Org Chem 62:3246–3253

    Article  PubMed  CAS  Google Scholar 

  • Ora M, Peltomäki M, Oivanen M et al (1998) Metal-ion promoted cleavage, isomerization, and desulfurization of the diastereomeric phosphoromonothioate analogues of uridylyl(3′,5′)uridine. J Org Chem 63:2939–2947

    Article  CAS  Google Scholar 

  • Ora M, Järvi J, Oivanen M et al (2000) Hydrolytic reactions of the phosphorodithioate analogue of uridylyl(3′,5′)uridine: kinetics and mechanisms for the cleavage, desulfurization, and isomerization of the internucleosidic linkage. J Org Chem 65:2651–2657

    Article  PubMed  CAS  Google Scholar 

  • Osborne EM, Schaak JE, DeRose VJ (2005) Characterization of a native hammerhead ribozyme derived from schistosomes. RNA 11:187–196

    Article  PubMed  CAS  Google Scholar 

  • Osborne EM, Ward WL, Rühle MZ et al (2009) The identity of the nucleophile substitution may influence metal interactions with the cleavage site of the minimal hammerhead ribozyme. Biochemistry 48:10654–10664

    Article  PubMed  CAS  Google Scholar 

  • Padgett RA, Podar M, Boulanger SC et al (1994) The stereochemical course of group II intron self-splicing. Science 266:1685–1688

    Article  PubMed  CAS  Google Scholar 

  • Peracchi A, Beigelman L, Scott EC et al (1997) Involvement of a specific metal ion in the transition of the hammerhead ribozyme to its catalytic conformation. J Biol Chem 272:26822–26826

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer T, Tekos A, Warnecke JM et al (2000) Effects of phosphorothioate modifications on precursor tRNA processing by eukaryotic RNase P enzymes. J Mol Chem 298:559–565

    CAS  Google Scholar 

  • Piccirilli JA, Vyle JS, Caruthers MH et al (1993) Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature 361:85–88

    Article  PubMed  CAS  Google Scholar 

  • Purcell J, Hengge AC (2005) The thermodynamics of phosphate versus phosphorothioate ester hydrolysis. J Org Chem 70:8437–8442

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal J, Doudna JA, Szostak JW (1989) Stereochemical course of catalysis by the Tetrahymena ribozyme. Science 244:692–694

    Article  PubMed  CAS  Google Scholar 

  • Reese CB, Simons C, Pei-Zhuo Z (1994) The synthesis of 2′-thiouridylyl-(3′ → 5′)-uridine. J Chem Soc Chem Commun N15:1809–1810

    Article  Google Scholar 

  • Saenger W, Suck D, Eckstein F (1974) On the mechanism of ribonuclease A. Eur J Biochem 46:559–567

    Article  PubMed  CAS  Google Scholar 

  • Scott EC, Uhlenbeck OC (1999) A re-investigation of the thio effect at the hammerhead cleavage site. Nucleic Acids Res 27:479–484

    Article  PubMed  CAS  Google Scholar 

  • Shan SO, Herschlag D (1999) Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2′-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme. Biochemistry 38:10958–10975

    Article  PubMed  CAS  Google Scholar 

  • Shan SO, Herschlag D (2000) An unconventional origin of metal-ion rescue and inhibition in the Tetrahymena group I ribozyme reaction. RNA 6:795–813

    Article  PubMed  CAS  Google Scholar 

  • Shan SO, Yoshida A, Sun S et al (1999) Three metal ions at the active site of the Tetrahymena group I ribozyme. Proc Natl Acad Sci USA 96:12299–12304

    Article  PubMed  CAS  Google Scholar 

  • Shan SO, Kravchuk AV, Piccirilli JA et al (2001) Defining the catalytic metal ion interactions in the Tetrahymena ribozyme reaction. Biochemistry 40:5161–5171

    Article  PubMed  CAS  Google Scholar 

  • Sigel RKO, Song B, Sigel H (1997) Stabilities and structures of metal ion complexes of adenosine 5′-O-thiomonophosphate (AMPS2−) in comparison with those of its parent nucleotide (AMP2−) in aqueous solution. J Am Chem Soc 119:744–755

    Article  CAS  Google Scholar 

  • Sjögren AS, Pettersson E, Sjöberg BM et al (1997) Metal ion interaction with cosubstrate in self-splicing of group I introns. Nucleic Acids Res 25:648–653

    Article  PubMed  Google Scholar 

  • Slim G, Gait MJ (1991) Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. Nucleic Acids Res 19:1183–1188

    Article  PubMed  CAS  Google Scholar 

  • Smith JS, Nikonowicz EP (2000) Phosphorothioate substitution can substantially alter RNA conformation. Biochemistry 39:5642–5652

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer EJ, Sun S, Piccirilli JA (1997) Metal ion catalysis during splicing of premessenger RNA. Nature 388:801–805

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer EJ, Gordon PM, Piccirilli JA (1999) Metal ion catalysis during group II intron self-splicing: parallels with the spliceosome. Genes Dev 13:1729–1741

    Article  PubMed  CAS  Google Scholar 

  • Suzumura K-I, Takagi Y, Orita M et al (2004) NMR-based reappraisal of the coordination of a metal ion at the pro-Rp oxygen of the A9/G10.1 site in a hammerhead ribozyme. J Am Chem Soc 126:15504–15511

    Article  PubMed  CAS  Google Scholar 

  • Szewczak AA, Kosek AB, Piccirilli JA et al (2002) Identification of an active site ligand for a group I ribozyme catalytic metal ion. Biochemistry 41:2516–2525

    Article  PubMed  CAS  Google Scholar 

  • Thatcher GRJ, Kluger R (1989) Mechanism and catalysis of nucleophilic-substitution in phosphate-esters. Adv Phys Org Chem 25:99–265

    Article  CAS  Google Scholar 

  • Thomson JB, Patel BK, Jimenez V et al (1996) Synthesis and properties of diuridine phosphate analogues containing thio and amino modifications. J Org Chem 61:6273–6281

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Karbstein K, Peracchi A et al (1999) Identification of the hammerhead ribozyme metal ion binding site responsible for rescue of the deleterious effect of a cleavage site phosphorothioate. Biochemistry 38:14363–14378

    Article  PubMed  CAS  Google Scholar 

  • Warnecke JM, Furste JP, Hardt WD et al (1996) Ribonuclease P (RNase P) RNA is converted to a Cd(2+)-ribozyme by a single Rp-phosphorothioate modification in the precursor tRNA at the RNase P cleavage site. Proc Natl Acad Sci USA 93:8924–8928

    Article  PubMed  CAS  Google Scholar 

  • Warnecke JM, Held R, Busch S et al (1999) Role of metal ions in the hydrolysis reaction catalyzed by RNase P RNA from Bacillus subtilis. J Mol Biol 290:433–445

    Article  PubMed  CAS  Google Scholar 

  • Weinstein LB, Earnshaw DJ, Cosstick R et al (1996) Synthesis and characterization of an RNA dinucleotide containing a 3′-S-phosphorothiolate linkage. J Am Chem Soc 118:10341–10350

    Article  CAS  Google Scholar 

  • Weinstein LB, Jones BCNM, Cosstick R et al (1997) A second catalytic metal ion in a group I ribozyme. Nature 388:805–808

    Article  PubMed  CAS  Google Scholar 

  • Westheimer F (1968) Pseudo-rotation in the hydrolysis of phosphate esters. Acc Chem Res 1:70–78

    Article  CAS  Google Scholar 

  • Yean S-L, Wuenschell G, Termini J et al (2000) Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 408:881–884

    Article  PubMed  CAS  Google Scholar 

  • Yoshida A, Sun S, Piccirilli JA (1999) A new metal ion interaction in the Tetrahymena ribozyme reaction revealed by double sulfur substitution. Nat Struct Biol 6:318–321

    Article  PubMed  CAS  Google Scholar 

  • Yoshida A, Shan S, Herschlag D et al (2000) The role of the cleavage site 2′-hydroxyl in the Tetrahymena group I ribozyme reaction. Chem Biol 7:85–96

    Article  PubMed  CAS  Google Scholar 

  • Zhou DM, Usman N, Wincott FE et al (1996) Evidence for the rate-limiting departure of the 5′-oxygen in nonenzymatic and hammerhead ribozyme-catalyzed reactions. J Am Chem Soc 118:5862–5866

    Article  CAS  Google Scholar 

  • Zhou DM, Zhang L-H, Taira K (1997) Explanation by the double-metal-ion mechanism of catalysis for the differential metal ion effects on the cleavage rates of 5′-oxy and 5′-thio substrates by a hammerhead ribozyme. Proc Natl Acad Sci USA 94:14343–14348

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harri Lönnberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ora, M., Lönnberg, T., Lönnberg, H. (2012). Thio Effects as a Tool for Mechanistic Studies of the Cleavage of RNA Phosphodiester Bonds: The Chemical Basis. In: Erdmann, V., Barciszewski, J. (eds) From Nucleic Acids Sequences to Molecular Medicine. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27426-8_3

Download citation

Publish with us

Policies and ethics