Skip to main content

The Diverse Active Sites in Splicing, Debranching, and MicroRNA Processing Around RNA Phosphodiester Bonds

  • Chapter
  • First Online:
From Nucleic Acids Sequences to Molecular Medicine

Part of the book series: RNA Technologies ((RNATECHN))

  • 1801 Accesses

Abstract

The cleavage and ligation reactions at RNA phosphodiester bonds are the central reactions catalyzed by enzymes in critical cellular regulatory pathways. In pre-mRNA splicing, two phospho-transesterifications result in the right mRNA for protein synthesis with the intervening intron removed as a lariat structure. The lariat RNA is then debranched by an enzyme that specifically acts on this 2′-5′-branched RNA. Following debranching, some of these introns that include pre-microRNA sequences can be processed by Dicer that cleaves the RNA to provide microRNAs. Dicer and Drosha, enzymes that act on much bigger primary transcripts, are both RNase III-like enzymes that cleave the RNA phosphodiester linkage. All these reactions are in related pathways, and the RNA phosphodiester bonds are most likely cleaved with the aid of two metal ions, yet the active sites that host these could be composed entirely of RNA or entirely of protein, or possibly a hybrid of the two. Where unknown, it is possible to estimate some of these active site architectures through homology to closely related enzymes. Better insight into these related process and active sites will play a key role in leveraging these important RNA regulatory processes for molecular medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3′-SS:

3′-splice site

5′-SS:

5′-splice site

Aa-RNase III:

Aquifex aeolicus Ribonuclease III

BP:

Branch point

BPS:

Branch point sequence

Dbr:

Debranching enzyme

ISL:

Intramolecular stem loop

mRNA:

Messenger RNA

miRNA:

MicroRNA

RISC:

RNA-induced silencing complex

RNAi:

RNA interference

RNase:

Ribonuclease

RNP:

Ribonucleoprotein

snRNA:

Small nuclear RNA

snoRNA:

Small nucleolar RNA

U2AF:

U2 auxiliary factor

References

  • Abelson J (2008) Is the spliceosome a ribonucleoprotein enzyme? Nat Struct Mol Biol 15:1235–1237

    Article  PubMed  CAS  Google Scholar 

  • Adams PL, Stahley MR, Kosek AB et al (2004) Crystal structure of a self-splicing group I intron with both exons. Nature 430:45–50

    Article  PubMed  CAS  Google Scholar 

  • Arenas J, Hurwitz J (1987) Purification of a RNA debranching activity from HeLa cells. J Biol Chem 262:4274–4279

    PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP, Ruby JG, Jan CH (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86

    Article  PubMed  CAS  Google Scholar 

  • Beese LS, Steitz TA (1991) Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J 10:25–33

    PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM et al (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  PubMed  CAS  Google Scholar 

  • Bertini I, Sigel A, Sigel H (eds) (2001) Handbook on metalloproteins. Marcel Dekker, New York

    Google Scholar 

  • Bessonov S, Anokhina M, Will CL et al (2008) Isolation of an active step I spliceosome and composition of its RNP core. Nature 452:846–850

    Article  PubMed  CAS  Google Scholar 

  • Bevilacqua PC (2003) Mechanistic considerations for general acid–base catalysis by RNA: revisiting the mechanism of the hairpin ribozyme. Biochemistry 42:2259–2265

    Article  PubMed  CAS  Google Scholar 

  • Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336

    Article  PubMed  CAS  Google Scholar 

  • Blaszczyk J, Tropea JE, Bubunenko M et al (2001) Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. Structure 9:1225–1236

    Article  PubMed  CAS  Google Scholar 

  • Boeke JD, Ooi SL, Samarsky DA et al (1998) Intronic snoRNA biosynthesis in Saccharomyces cerevisiae depends on the lariat-debranching enzyme: intron length effects and activity of a precursor snoRNA. RNA 4:1096–1110

    Article  PubMed  Google Scholar 

  • Brameier M, Herwig A, Reinhardt R et al (2011) Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res 39:675–686

    Article  PubMed  CAS  Google Scholar 

  • Brow DA (2002) Allosteric cascade of spliceosome activation. Annu Rev Genet 36:333–360

    Article  PubMed  CAS  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  PubMed  CAS  Google Scholar 

  • Chakravarthy S, Sternberg SH, Kellenberger CA et al (2010) Substrate-specific kinetics of dicer-catalyzed RNA processing. J Mol Biol 404:392–402

    Article  PubMed  CAS  Google Scholar 

  • Chapman KB, Boeke JD (1991) Isolation and characterization of the gene encoding yeast debranching enzyme. Cell 65:483–492

    Article  PubMed  CAS  Google Scholar 

  • Chu VT, Adamidi C, Liu Q et al (2001) Control of branch-site choice by a group II intron. EMBO J 20:6866–6876

    Article  PubMed  CAS  Google Scholar 

  • Coller J, Parker R (2004) Eukaryotic mRNA decapping. Annu Rev Biochem 73:861–890

    Article  PubMed  CAS  Google Scholar 

  • Coombes CE, Boeke JD (2005) An evaluation of detection methods for large lariat RNAs. RNA 11:323–331

    Article  PubMed  CAS  Google Scholar 

  • Danin-Kreiselman M, Lee CY, Chanfreau G (2003) RNAse III-mediated degradation of unspliced pre-mRNAs and lariat introns. Mol Cell 11:1279–1289

    Article  PubMed  CAS  Google Scholar 

  • Datta B, Weiner AM (1993) The phylogenetically invariant ACAGAGA and AGC sequences of U6 small nuclear RNA are more tolerant of mutation in human cells than in Saccharomyces cerevisiae. Mol Cell Biol 13:5377–5382

    PubMed  CAS  Google Scholar 

  • Davies JF, Hostomska Z, Hostomsky Z et al (1991) Crystal-structure of the ribonuclease-H domain of HIV-1 reverse-transcriptase. Science 252:88–95

    Article  PubMed  CAS  Google Scholar 

  • Denli AM, Tops BBJ, Plasterk RHA et al (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235

    Article  PubMed  CAS  Google Scholar 

  • Doublie S, Tabor S, Long AM et al (1998) Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391:251–258

    Article  PubMed  CAS  Google Scholar 

  • Drider D, Condon C (2004) The continuing story of endoribonuclease III. J Mol Microb Biotech 8:195–200

    Article  CAS  Google Scholar 

  • Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2:919–929

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Abelson J (1990) Two domains of yeast U6 small nuclear RNA required for both steps of nuclear precursor messenger RNA splicing. Science 250:404–409

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Abelson J (1992) Thiophosphates in yeast U6 snRNA specifically affect pre-mRNA splicing in vitro. Nucleic Acids Res 20:3659–3664

    Article  PubMed  CAS  Google Scholar 

  • Ganeshan K, Tadey T, Nam K et al (1995) Novel approaches to the synthesis and analysis of branched RNA. Nucleos Nucleot 14:1009–1013

    Article  CAS  Google Scholar 

  • Garneau NL, Wilusz J, Wilusz CJ (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8:113–126

    Article  PubMed  CAS  Google Scholar 

  • Gesteland RF, Cech TR, Atkins JF (eds) (2006) The RNA world, 3rd edn. Cold Spring Harbor Lab Press, New York

    Google Scholar 

  • Goldberg J, Huang HB, Kwon YG et al (1995) Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature 376:745–753

    Article  PubMed  CAS  Google Scholar 

  • Gordon PM, Sontheimer EJ, Piccirilli JA (2000a) Kinetic characterization of the second step of group II intron splicing: role of metal ions and the cleavage site 2′-OH in catalysis. Biochemistry 39:12939–12952

    Article  PubMed  CAS  Google Scholar 

  • Gordon PM, Sontheimer EJ, Piccirilli JA (2000b) Metal ion catalysis during the exon-ligation step of nuclear pre-mRNA splicing: extending the parallels between the spliceosome and group II introns. RNA 6:199–205

    Article  PubMed  CAS  Google Scholar 

  • Grainger RJ, Beggs JD (2005) Prp8 protein: at the heart of the spliceosome. RNA 11:533–557

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Karunatilaka KS, Rueda D (2009) Single-molecule analysis of protein-free U2-U6 snRNAs. Nat Struct Mol Biol 16:1154–1159

    Article  PubMed  CAS  Google Scholar 

  • Highbarger LA, Gerlt JA, Kenyon GL (1996) Mechanism of the reaction catalyzed by acetoacetate decarboxylase. Importance of lysine 116 in determining the pK(a) of active-site lysine 115. Biochemistry 35:41–46

    Article  PubMed  CAS  Google Scholar 

  • Hilliker AK, Staley JP (2004) Multiple functions for the invariant AGC triad of U6 snRNA. RNA 10:921–928

    Article  PubMed  CAS  Google Scholar 

  • Hopfner KP, Karcher A, Craig L et al (2001) Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105:473–485

    Article  PubMed  CAS  Google Scholar 

  • Hoskins AA, Friedman LJ, Gallagher SS et al (2011) Ordered and dynamic assembly of single spliceosomes. Science 331:1289–1295

    Article  PubMed  CAS  Google Scholar 

  • Huppler A, Nikstad LJ, Allmann AM et al (2002) Metal binding and base ionization in the U6 RNA intramolecular stem-loop structure. Nat Struct Biol 9:431–435

    Article  PubMed  CAS  Google Scholar 

  • Jacquier A, Rosbash M (1986) RNA splicing and intron turnover are greatly diminished by amutant yeast branch point. Proc Natl Acad Sci USA 83:5835–5839

    Article  PubMed  CAS  Google Scholar 

  • Ji XH (2006) Structural basis for non-catalytic and catalytic activities of ribonuclease III. Acta Crystallogr D 62:933–940

    Article  PubMed  CAS  Google Scholar 

  • Ji X (2008) The mechanism of RNase III Action: how dicer dices. In: Paddison PJ, Vogt PK (eds) RNA interference, vol 320, Current Topics in Microbiology and Immunology. Springer, Berlin, pp 99–116

    Chapter  Google Scholar 

  • Ji X, Gan J, Shaw G et al (2008) A stepwise model for double-stranded RNA processing by ribonuclease III. Mol Microbiol 67:143–154

    PubMed  Google Scholar 

  • Kapinos LE, Song B, Sigel H (1999) Acid-base and metal-ion-coordinating properties of benzimidazole and derivatives (=1,3-dideazapurines) in aqueous solution: interrelation between complex stability and ligand basicity. Chem Eur J 5:1794–1802

    Article  CAS  Google Scholar 

  • Karst SM, Rutz NL, Menees TM (2000) The yeast retrotransposons Ty1 and Ty3 require the RNA lariat debranching enzyme, Dbr1p for efficient accumulation of reverse transcripts. Biochem Biophys Res Commun 268:112–117

    Article  PubMed  CAS  Google Scholar 

  • Keating KS, Toor N, Perlman PS et al (2010) A structural analysis of the group II intron active site and implications for the spliceosome. RNA 16:1–9

    Article  PubMed  Google Scholar 

  • Khalid MF, Damha MJ, Shuman S et al (2005) Structure-function analysis of yeast RNA debranching enzyme (Dbr1), a manganese-dependent phosphodiesterase. Nucleic Acids Res 33:6349–6360

    Article  PubMed  CAS  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385

    Article  PubMed  CAS  Google Scholar 

  • Kim EE, Wyckoff HW (1991) Reaction mechanism of alkaline phosphatase based on crystal structures two-metal ion catalysis. J Mol Biol 218:449–464

    Article  PubMed  CAS  Google Scholar 

  • Kim JW, Kim HC, Kim GM et al (2000) Human RNA lariat debranching enzyme cDNA complements the phenotypes of Saccharomyces cerevisiae dbr1 and Schizosaccharomyces pombe dbr1 mutants. Nucleic Acids Res 28:3666–3673

    Article  PubMed  CAS  Google Scholar 

  • Kim HC, Kim GM, Yang JM et al (2001) Cloning, expression, and complementation test of the RNA lariat debranching enzyme cDNA from mouse. Mol Cells 11:198–203

    PubMed  CAS  Google Scholar 

  • Kissinger CR, Parge HE, Knighton DR et al (1995) Crystal structures of human calcineurin and the human FKBP12–FK506–calcineurin complex. Nature 378:641–644

    Article  PubMed  CAS  Google Scholar 

  • Konarska MM, Vilardell J, Query CC (2006) Repositioning of the reaction intermediate within the catalytic center of the spliceosome. Mol Cell 21:543–553

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV (1994) Conserved sequence pattern in a wide variety of phosphoesterases. Protein Sci 3:356–358

    Article  PubMed  CAS  Google Scholar 

  • Lai EC, Okamura K, Hagen JW et al (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130:89–100

    Article  PubMed  CAS  Google Scholar 

  • Lai EC, Martin R, Smibert P et al (2009) A drosophila pasha mutant distinguishes the canonical microRNA and mirtron pathways. Mol Cell Biol 29:861–870

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Ahn C, Han JJ et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Jaladat Y, Mohammadi A et al (2010) Metal binding and substrate positioning by evolutionarily invariant U6 sequences in catalytically active protein-free snRNAs. RNA 16:2226–2238

    Article  PubMed  CAS  Google Scholar 

  • Lin SL, Miller JD, Ying SY (2006) Intronic microRNA (miRNA). J Biomed Biotechnol 2006:26818

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Rauhut R, Vornlocher HP et al (2006) The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP. RNA 12:1418–1430

    Article  PubMed  CAS  Google Scholar 

  • MacRae IJ, Zhou KH, Li F et al (2006) Structural basis for double-stranded RNA processing by dicer. Science 311:195–198

    Article  PubMed  CAS  Google Scholar 

  • Madhani HD, Guthrie C (1992) A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 71:803–817

    Article  PubMed  CAS  Google Scholar 

  • Madhani HD, Bordonne R, Guthrie C (1990) Multiple roles for U6 snRNA in the splicing pathway. Genes Dev 4:2264–2277

    Article  PubMed  CAS  Google Scholar 

  • Maschhoff KL, Padgett RA (1993) The stereochemical course of the first step of pre-mRNA splicing. Nucleic Acids Res 21:5456–5462

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS (2007) A new paradigm for developmental biology. J Exp Biol 210:1526–1547

    Article  PubMed  Google Scholar 

  • Mefford MA, Staley JP (2009) Evidence that U2/U6 helix I promotes both catalytic steps of pre-mRNA splicing and rearranges in between these steps. RNA 15:1386–1397

    Article  PubMed  CAS  Google Scholar 

  • Moore MJ, Sharp PA (1993) Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature 365:364–368

    Article  PubMed  CAS  Google Scholar 

  • Mourani R, Damha M (2006) Synthesis, characterization, and biological properties of small branched RNA fragments containing chiral (R-P and S-P) 2 ′,5 ′-phosphorothioate linkages. Nucleos Nucleot Nucleic Acids 25:203–229

    Article  CAS  Google Scholar 

  • Nam KB, Hudson RHE, Chapman KB et al (1994) Yeast lariat debranching enzyme–substrate and sequence specificity. J Biol Chem 269:20613–20621

    PubMed  CAS  Google Scholar 

  • Nam K, Lee G, Trambley J et al (1997) Severe growth defect in a Schizosaccharomyces pombe mutant defective in intron lariat degradation. Mol Cell Biol 17:809–818

    PubMed  CAS  Google Scholar 

  • Oda Y, Yamazaki T, Nagayama K et al (1994) Individual ionization constants of all the carboxyl groups in Ribonuclease HI from Escherichia coli determined by NMR. Biochemistry 33:5275–5284

    Article  PubMed  CAS  Google Scholar 

  • Ooi SL, Samarsky DA, Fournier MJ et al (1998) Intronic snoRNA biosynthesis in Saccharomyces cerevisiae depends on the lariat-debranching enzyme: Intron length effects and activity of a precursor snoRNA. RNA 4:1096–1110

    Article  PubMed  CAS  Google Scholar 

  • Ooi SL, Dann C, Nam K et al (2001) RNA lariat debranching enzyme. Methods Enzymol 342:233–248

    Article  PubMed  CAS  Google Scholar 

  • Padgett RA, Dayie KT (2008) A glimpse into the active site of a group II intron and maybe the spliceosome, too. RNA 14:1697–1703

    Article  PubMed  CAS  Google Scholar 

  • Padgett RA, Podar M, Boulanger SC et al (1994) The stereochemical course of group-Ii Intron self-splicing. Science 266:1685–1688

    Article  PubMed  CAS  Google Scholar 

  • Paredes E, Grahacharya D, Evans M, Raney E, Dey SK, Macbeth M, Das SR (2011) Unpublished results

    Google Scholar 

  • Patel AA, Steitz JA (2003) Splicing double: insights from the second spliceosome. Nat Rev Mol Cell Biol 4:960–970

    Article  PubMed  CAS  Google Scholar 

  • Pena V, Rozov A, Fabrizio P et al (2008) Structure and function of an RNase H domain at the heart of the spliceosome. EMBO J 27:2929–2940

    Article  PubMed  CAS  Google Scholar 

  • Pertea M, Salzberg SL (2010) Between a chicken and a grape: estimating the number of human genes. Gen Biol 11:206

    Article  CAS  Google Scholar 

  • Piccirilli JA, Vyle JS, Caruthers MH et al (1993) Metal-ion catalysis in the tetrahymena ribozyme reaction. Nature 361:85–88

    Article  PubMed  CAS  Google Scholar 

  • Podar M, Perlman PS, Padgett RA (1995) Stereochemical selectivity of group II intron splicing, reverse splicing, and hydrolysis reactions. Mol Cell Biol 15:4466–4478

    PubMed  CAS  Google Scholar 

  • Podar M, Chu VT, Pyle AM et al (1998) Group II intron splicing in vivo by first-step hydrolysis. Nature 391:915–918

    Article  PubMed  CAS  Google Scholar 

  • Pomeranz Krummel DA, Oubridge C, Leung AK et al (2009) Crystal structure of human spliceosomal U1 snRNP at 5.5 A resolution. Nature 458:475–480

    Article  PubMed  CAS  Google Scholar 

  • Pratico ED, Wang Y, Silverman SK (2005) A deoxyribozyme that synthesizes 2′,5′-branched RNA with any branch-site nucleotide. Nucleic Acids Res 33:3503–3512

    Article  PubMed  CAS  Google Scholar 

  • Pyle AM (2010) The tertiary structure of group II introns: implications for biological function and evolution. Crit Rev Biochem Mol 45:215–232

    Article  CAS  Google Scholar 

  • Rhode BM, Hartmuth K, Westhof E, Lührmann R (2006) Proximity of conserved U6 and U2 snRNA elements to the 5′ splice site region in activated spliceosomes. EMBO J 25:2475–2486

    Article  PubMed  CAS  Google Scholar 

  • Ritchie DB, Schellenberg MJ, Gesner EM et al (2008) Structural elucidation of a PRP8 core domain from the heart of the spliceosome. Nat Struct Mol Biol 15:1199–1205

    Article  PubMed  CAS  Google Scholar 

  • Ruskin B, Green MR (1985) An RNA processing activity that debranches RNA lariats. Science 229:135–140

    Article  PubMed  CAS  Google Scholar 

  • Ruskin B, Krainer AR, Maniatis T et al (1984) Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38:317–331

    Article  PubMed  CAS  Google Scholar 

  • Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80:1483–1521

    PubMed  CAS  Google Scholar 

  • Salem LA, Boucher CL, Menees TM (2003) Relationship between RNA lariat debranching and Ty1 element retrotransposition. J Virol 77:12795–12806

    Article  PubMed  CAS  Google Scholar 

  • Sashital DG, Cornilescu G, McManus CJ et al (2004) U2-U6 RNA folding reveals a group II intron-like domain and a four-helix junction. Nat Struct Mol Biol 11:1237–1242

    Article  PubMed  CAS  Google Scholar 

  • Segault V, Will CL, Polycarpou-Schwarz M et al (1999) Conserved loop I of U5 small nuclear RNA is dispensable for both catalytic steps of pre-mRNA splicing in HeLa nuclear extracts. Mol Cell Biol 19:2782–2790

    PubMed  CAS  Google Scholar 

  • Sharp PA (1987) Splicing of messenger RNA precursors. Science 235:766–771

    Article  PubMed  CAS  Google Scholar 

  • Sigel RKO, Pyle AM (2007) Alternative roles for metal ions in enzyme catalysis and the implications for ribozyme chemistry. Chem Rev 107:97–113

    Article  PubMed  CAS  Google Scholar 

  • Sigel RKO, Vaidya A, Pyle AM (2000) Metal ion binding sites in a group II intron core. Nat Struct Biol 7:1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer EJ, Sun S, Piccirilli JA (1997) Metal ion catalysis during splicing of premessenger RNA. Nature 388:801–805

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer EJ, Gordon PM, Piccirilli JA (1999) Metal ion catalysis during group II intron self-splicing: parallels with the spliceosome. Genes Dev 13:1729–1741

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 90:6498–6502

    Article  PubMed  CAS  Google Scholar 

  • Strould RM, Du Z, Lee JK et al (2008) Structural and biochemical insights into the dicing mechanism of mouse dicer: a conserved lysine is critical for dsRNA cleavage. Proc Natl Acad Sci USA 105:2391–2396

    Article  Google Scholar 

  • Sun JS, Manley JL (1995) A novel U2-U6 snRNA structure is necessary for mammalian messenger-RNA splicing. Genes Dev 9:843–854

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Pertzev A, Nicholson AW (2005) Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis. Nucleic Acids Res 33:807–815

    Article  PubMed  CAS  Google Scholar 

  • Sundaramoorthy M, Youngs HL, Gold MH et al (2005) High-resolution crystal structure of manganese peroxidase: substrate and inhibitor complexes. Biochemistry 44:6463–6470

    Article  PubMed  CAS  Google Scholar 

  • Toor N, Hausner G, Zimmerly S (2001) Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7:1142–1152

    Article  PubMed  CAS  Google Scholar 

  • Toor N, Keating KS, Taylor SD et al (2008a) Crystal structure of a self-spliced group II intron. Science 320:77–82

    Article  PubMed  CAS  Google Scholar 

  • Toor N, Rajashankar K, Keating KS et al (2008b) Structural basis for exon recognition by a group II intron. Nat Struct Mol Biol 15:1221–1222

    Article  PubMed  CAS  Google Scholar 

  • Toor N, Keating KS, Pyle AM (2009) Structural insights into RNA splicing. Curr Opin Struc Biol 19:260–266

    Article  CAS  Google Scholar 

  • Toor N, Keating KS, Fedorova O et al (2010) Tertiary architecture of the Oceanobacillus iheyensis group II intron. RNA 16:57–69

    Article  PubMed  CAS  Google Scholar 

  • Tsai RT, Fu RH, Yeh FL et al (2005) Spliceosome disassembly catalyzed by Prp43 and its associated components Ntr1 and Ntr2. Genes Dev 19:2991–3003

    Article  PubMed  CAS  Google Scholar 

  • Turner IA, Norman CM, Churcher MJ et al (2006) Dissection of Prp8 protein defines multiple interactions with crucial RNA sequences in the catalytic core of the spliceosome. RNA 12:375–386

    Article  PubMed  CAS  Google Scholar 

  • Tycowski KT, Steitz JA (2001) Non-coding snoRNA host genes in Drosophila: expression strategies for modification guide snoRNAs. Eur J Cell Biol 80:119–125

    Article  PubMed  CAS  Google Scholar 

  • Valadkhan S, Manley JL (2001) Splicing-related catalysis by protein-free snRNAs. Nature 413:701–707

    Article  PubMed  CAS  Google Scholar 

  • Valadkhan S, Mohammadi A, Jaladat Y et al (2009) Protein-free small nuclear RNAs catalyze a two-step splicing reaction. Proc Natl Acad Sci USA 106:11901–11906

    Article  PubMed  CAS  Google Scholar 

  • Valcarcel J, Gaur RK, Singh R et al (1996) Interaction of U2AF65 RS region with pre-mRNA branch point and promotion of base pairing with U2 snRNA. Science 273:1706–1709

    Article  PubMed  CAS  Google Scholar 

  • van den Berg A, Slezak-Prochazka I, Durmus S et al (2010) MicroRNAs, macrocontrol: regulation of miRNA processing. RNA 16:1087–1095

    Article  PubMed  CAS  Google Scholar 

  • Veretnik S, Wills C, Youkharibache P et al (2009) Sm/Lsm genes provide a glimpse into the early evolution of the spliceosome. PLoS Comput Biol 5:e1000315

    Article  PubMed  CAS  Google Scholar 

  • Voegtli WC, White DJ, Reiter NJ et al (2000) Structure of the bacteriophage lambda Ser/Thr protein phosphatase with sulfate ion bound in two coordination modes. Biochemistry 39:15365–15374

    Article  PubMed  CAS  Google Scholar 

  • Wahl MC, Will CL, Lührmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718

    Article  PubMed  CAS  Google Scholar 

  • Walter NG (2007) Ribozyme catalysis revisited: is water involved? Mol Cell 28:923–929

    Article  PubMed  CAS  Google Scholar 

  • Warshel A (1981) Electrostatic basis of structure-function correlation in proteins. Acc Chem Res 14:284–290

    Article  CAS  Google Scholar 

  • Weinstein LB, Jones BCNM, Cosstick R et al (1997) A second catalytic metal ion in a group I ribozyme. Nature 388:805–808

    Article  PubMed  CAS  Google Scholar 

  • Will CL, Lührmann R (2006) Spliceosome structure and function. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world, 3rd edn. Cold Spring Harbor Lab Press, New York, pp 369–400

    Google Scholar 

  • Will CL, Schneider C, MacMillan AM et al (2001) A novel U2 and U11/U12 snRNP protein that associates with the pre-mRNA branch site. EMBO J 20:4536–4546

    Article  PubMed  CAS  Google Scholar 

  • Williams RS, Moncalian G, Williams JS et al (2008) Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell 135:97–109

    Article  PubMed  CAS  Google Scholar 

  • Winter J, Diederichs S (2011) MicroRNA biogenesis and cancer. In: Wu W (ed) MicroRNA and cancer methods and protocols, vol 676, Methods in molecular biology. Humana, New York, pp 3–22

    Google Scholar 

  • Wu J, Manley JL (1989) Mammalian pre-mRNA branch site selection by U2 snRNP involves base pairing. Genes Dev 3:1553–1561

    Article  PubMed  CAS  Google Scholar 

  • Wu HJ, Xu H, Miraglia LJ et al (2000) Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol Chem 275:36957–36965

    Article  PubMed  CAS  Google Scholar 

  • Yang K, Zhang L, Xu T et al (2008) Crystal structure of the beta-finger domain of Prp8 reveals analogy to ribosomal proteins. Proc Natl Acad Sci USA 105:13817–13822

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, De Leon J, Yokoyama N et al (2005) DBR1 siRNA inhibition of HIV-1 replication. Retrovirology 2:9

    Article  CAS  Google Scholar 

  • Yean SL, Wuenschell G, Termini J et al (2000) Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 408:881–884

    Article  PubMed  CAS  Google Scholar 

  • Yoshida A, Sun SG, Piccirilli JA (1999) A new metal ion interaction in the Tetrahymena ribozyme reaction revealed by double sulfur substitution. Nat Struct Biol 6:318–321

    Article  PubMed  CAS  Google Scholar 

  • Yu YT, Maroney PA, Darzynkiwicz E et al (1995) U6 snRNA function in nuclear pre-mRNA splicing: a phosphorothioate interference analysis of the U6 phosphate backbone. RNA 1:46–54

    PubMed  CAS  Google Scholar 

  • Yuan F, Griffin L, Phelps L et al (2007) Use of a novel Forster resonance energy transfer method to identify locations of site-bound metal ions in the U2-U6 snRNA complex. Nucleic Acids Res 35:2833–2845

    Article  PubMed  CAS  Google Scholar 

  • Zhuo SQ, Clemens JC, Stone RL et al (1994) Mutational analysis of a Ser/Thr phosphatase - identification of residues important in phosphoesterase substrate binding and catalysis. J Biol Chem 269:26234–26238

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the DSF Charitable Foundation for financial support of the Das laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subha R. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dey, S.K., Paredes, E., Evans, M., Das, S.R. (2012). The Diverse Active Sites in Splicing, Debranching, and MicroRNA Processing Around RNA Phosphodiester Bonds. In: Erdmann, V., Barciszewski, J. (eds) From Nucleic Acids Sequences to Molecular Medicine. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27426-8_19

Download citation

Publish with us

Policies and ethics