Abstract
Downregulation of viral genes via oligonucleotide-based gene therapy is a potential strategy for the treatment of virus infection such as hepatitis C. Hepatitis C virus (HCV) is a small-sized, enveloped, positive-sense single-stranded RNA virus. As HCV has highly mutative properties and strong drug resistance, effective antiviral drug for HCV infection is currently unavailable. One of the potential therapeutic strategies for hepatitis C treatment is to cleave HCV RNA genome with proper antisense nucleic acids, thereby inhibiting virus replication in host. RNA-cleaving antisense oligodeoxyribozyme, known as DNAzyme, is an attractive therapeutic oligonucleotide which enables cleavage of mRNA in a sequence-specific manner and thus silencing target gene. In this chapter, we discuss current status of functional antisense oligonucleotides that have been applied to inhibit HCV replication in vitro and in vivo. In particular, the DNAzyme and the DNAzyme conjugated nanoparticle system are discussed in detail to demonstrate a successful usage of functional oligonucleotide and its delivery in vivo for further therapeutic application of functional oligonucleotides in the treatment of hepatitis C.
Keywords
- Antisense oligonucleotide
- DNAzyme
- Hepatitis C virus
- Nanomaterial-based gene delivery
- RNA cleavage
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Achenbach JC, Chiuman W, Cruz RP et al (2004) DNAzymes: from creation in vitro to application in vivo. Curr Pharm Biotechnol 5:321–336
Agrawal A, Min DH, Singh N et al (2009) Functional delivery of siRNA in mice using dendriworms. ACS Nano 3:2495–2504
Alotte C, Martin A, Caldarelli SA et al (2008) Short peptide nucleic acids (PNA) inhibit hepatitis C virus internal ribosome entry site (IRES) dependent translation in vitro. Antiviral Res 80:280–287
Alt M, Eisenhardt S, Serwe M et al (1999) Comparative inhibitory potential of differently modified antisense oligodeoxynucleotides on hepatitis C virus translation. Eur J Clin Invest 29:868–876
Appaiahgari MB, Vrati S (2007) DNAzyme-mediated inhibition of Japanese encephalitis virus replication in mouse brain. Mol Ther 15:1593–1599
Bartenschlager R, Ahlborn-Laake L, Mous J et al (1993) Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. J Virol 67:3835–3844
Bartolome J, Castillo I, Carreno V (2004) Ribozymes as antiviral agents. Minerva Med 95:11–24
Braasch DA, Corey DR (2001) Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol 8:1–7
Brown AB, Mahmood U, Cortes ML et al (2005) Magnetic resonance imaging and characterization of spontaneous lesions in a transgenic mouse model of tuberous sclerosis as a model for endothelial cell-based transgene delivery. Hum Gene Ther 16:1367–1376
Brown-Driver V, Eto T, Lesnik E et al (1999) Inhibition of translation of hepatitis C virus RNA by 2-modified antisense oligonucleotides. Antisense Nucleic Acid Drug Dev 9:145–154
Bukh J (2004) A critical role for the chimpanzee model in the study of hepatitis C. Hepatology 39:1469–1475
Choi WH, Choi BR, Kim JH et al (2008) Design and kinetic analysis of hammerhead ribozyme and DNAzyme that specifically cleave TEL-AML1 chimeric mRNA. Biochem Biophys Res Commun 374:169–174
Choi YS, Lee JY, Suh JS et al (2010) The systemic delivery of siRNAs by a cell penetrating peptide, low molecular weight protamine. Biomaterials 31:1429–1443
Choo QL, Richman KH, Han JH et al (1991) Genetic organization and diversity of the hepatitis C virus. Proc Natl Acad Sci USA 88:2451–2455
Crooke ST (2004) Progress in antisense technology. Annu Rev Med 55:61–95
Dass CR (2004) Deoxyribozymes: cleaving a path to clinical trials. Trends Pharmacol Sci 25:395–397
Dass CR, Choong PF, Khachigian LM (2008) DNAzyme technology and cancer therapy: cleave and let die. Mol Cancer Ther 7:243–251
De Francesco R, Migliaccio G (2005) Challenges and successes in developing new therapies for hepatitis C. Nature 436:953–960
Deng Z, Tian Y, Lee SH et al (2005) DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angew Chem Int Ed 44:3582–3585
Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18
Derfus AM, Chen AA, Min DH et al (2007) Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 18:1391–1396
Dobson J (2006) Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 13:283–287
El-Aneed A (2004) An overview of current delivery systems in cancer gene therapy. J Control Release 94:1–14
Fluiter K, ten Asbroek AL, de Wissel MB et al (2003) In vivo tumour growth inhibition and biodistribution studies of locked nucleic acid (LNA) antisense oligonucleotides. Nucleic Acids Res 31:953–962
Fluiter K, Frieden M, Vreijling J et al (2005) Evaluation of LNA modified DNAzymes targeting a single nucleotide polymorphism in the large subunit of RNA polymerase II. Oligonucleotides 15:246–254
Ge Q, Filip L, Bai A et al (2004) Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci USA 101:8676–8681
Ghosh P, Han G, De M et al (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315
Giljohann DA, Seferos DS, Prigodich AE et al (2009) Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 131:2072–2073
Grakoui A, McCourt DW, Wychowski C et al (1993) A second hepatitis C virus-encoded proteinase. Proc Natl Acad Sci USA 90:10583–10587
Grzelinski M, Urban-Klein B, Martens T et al (2006) RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum Gene Ther 17:751–766
Han M, Gao X, Su JZ et al (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635
Hanecak R, Brown-Driver V, Fox MC et al (1996) Antisense oligonucleotide inhibition of hepatitis C virus gene expression in transformed hepatocytes. J Virol 70:5203–5212
Heale BS, Soifer HS, Bowers C et al (2005) siRNA target site secondary structure predictions using local stable substructures. Nucleic Acids Res 33:e30
Hijikata M, Mizushima H, Akagi T et al (1993) Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. J Virol 67:4665–4675
Honda M, Brown EA, Lemon SM (1996) Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2:955–968
Honda M, Beard MR, Ping LH et al (1999) A phylogenetically conserved stem-loop structure at the 5′ border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation. J Virol 73:1165–1174
Hoofnagle JH (2002) Course and outcome of hepatitis C. Hepatology 36:S21–S29
Huh YM, Jun YW, Song HT et al (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127:12387–12391
Isaka Y (2007) DNAzymes as potential therapeutic molecules. Curr Opin Mol Ther 9:132–136
Jang JT, Nah H, Lee JH et al (2009) Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem Int Ed 48:1234–1238
Kato N, Hijikata M, Ootsuyama Y et al (1990) Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc Natl Acad Sci USA 87:9524–9528
Khoury M, Louis-Plence P, Escriou V et al (2006) Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor alpha in experimental arthritis. Arthritis Rheum 54:1867–1877
Kretschmer-Kazemi Far R, Sczakiel G (2003) The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res 31:4417–4424
Labhasetwar V (2005) Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery. Curr Opin Biotechnol 16:674–680
Lanford RE, Hildebrandt-Eriksen ES, Petri A et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201
Laxton C, Brady K, Moschos S et al (2011) Selection, optimization, and pharmacokinetic properties of a novel, potent antiviral locked nucleic acid-based antisense oligomer targeting hepatitis C virus internal ribosome entry site. Antimicrob Agents Chemother 55:3105–3114
Lee B, Kim KB, Oh S et al (2010) Suppression of hepatitis C virus genome replication in cells with RNA-cleaving DNA enzymes and short-hairpin RNA. Oligonucleotides 20:285–296
Lewin AS, Hauswirth WW (2001) Ribozyme gene therapy: applications for molecular medicine. Trends Mol Med 7:221–228
Li W, Szoka FC Jr (2007) Lipid-based nanoparticles for nucleic acid delivery. Pharm Res 24:438–449
Lima WF, Brown-Driver V, Fox M et al (1997) Combinatorial screening and rational optimization for hybridization to folded hepatitis C virus RNA of oligonucleotides with biological antisense activity. J Biol Chem 272:626–638
Lohmann V, Korner F, Dobierzewska A et al (2001) Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J Virol 75:1437–1449
Lu ZX, Ye M, Yan GR et al (2005) Effect of EBV LMP1 targeted DNAzymes on cell proliferation and apoptosis. Cancer Gene Ther 12:647–654
Ludwig J, Blaschke M, Sproat BS (1998) Extending the cleavage rules for the hammerhead ribozyme: mutating adenosine15.1 to inosine15.1 changes the cleavage site specificity from N16.2U16.1H17 to N16.2C16.1H17. Nucleic Acids Res 26:2279–2285
Luo KQ, Chang DC (2004) The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochem Biophys Res Commun 318:303–310
Manabe S, Fuke I, Tanishita O et al (1994) Production of nonstructural proteins of hepatitis C virus requires a putative viral protease encoded by NS3. Virology 198:636–644
Matveeva O, Felden B, Audlin S et al (1997) A rapid in vitro method for obtaining RNA accessibility patterns for complementary DNA probes: correlation with an intracellular pattern and known RNA structures. Nucleic Acids Res 25:5010–5016
McCaffrey AP, Meuse L, Karimi M et al (2003) A potent and specific morpholino antisense inhibitor of hepatitis C translation in mice. Hepatology 38:503–508
McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241–1251
McHutchison JG, Fried MW (2003) Current therapy for hepatitis C: pegylated interferon and ribavirin. Clin Liver Dis 7:149–161
McHutchison JG, Patel K, Pockros P et al (2006) A phase I trial of an antisense inhibitor of hepatitis C virus (ISIS 14803), administered to chronic hepatitis C patients. J Hepatol 44:88–96
McMahon KM, Mutharasan RK, Tripathy S et al (2011) Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery. Nano Lett 11:1208–1214
McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747
Mizushima H, Hijikata M, Tanji Y et al (1994) Analysis of N-terminal processing of hepatitis C virus nonstructural protein 2. J Virol 68:2731–2734
Mizutani T, Kato N, Hirota M et al (1995) Inhibition of hepatitis C virus replication by antisense oligonucleotide in culture cells. Biochem Biophys Res Commun 212:906–911
Morrissey DV, Lockridge JA, Shaw L et al (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23:1002–1007
Nelson AR, Borland L, Allbritton NL et al (2007) Myristoyl-based transport of peptides into living cells. Biochemistry 46:14771–14781
Nielsen PE (1997) Peptide nucleic acid (PNA) from DNA recognition to antisense and DNA structure. Biophys Chem 68:103–108
Oketani M, Asahina Y, Wu CH et al (1999) Inhibition of hepatitis C virus-directed gene expression by a DNA ribonuclease. J Hepatol 31:628–634
Park TG, Jeong JH, Kim SW (2006) Current status of polymeric gene delivery systems. Adv Drug Deliv Rev 58:467–486
Patel PC, Giljohann DA, Daniel WL et al (2010) Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug Chem 21:2250–2256
Petersen M, Nielsen CB, Nielsen KE et al (2000) The conformations of locked nucleic acids (LNA). J Mol Recognit 13:44–53
Rockwell P, O’Connor WJ, King K et al (1997) Cell-surface perturbations of the epidermal growth factor and vascular endothelial growth factor receptors by phosphorothioate oligodeoxynucleotides. Proc Natl Acad Sci USA 94:6523–6528
Ryoo SR, Jang H, Kim KS et al (2012) Functional delivery of DNAzyme with iron oxide nanoparticles for hepatitis C virus gene knockdown. Biomaterials 33: 2754–2761 doi:10.1016/j.biomaterials.2011.12.015
Saito G, Swanson JA, Lee KD (2003) Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev 55:199–215
Santiago FS, Lowe HC, Kavurma MM et al (1999) New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury. Nat Med 5:1264–1269
Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 94:4262–4266
Schiffelers RM, Ansari A, Xu J et al (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32:e149
Schubert S, Gul DC, Grunert HP et al (2003) RNA cleaving “10-23” DNAzymes with enhanced stability and activity. Nucleic Acids Res 31:5982–5992
Schubert S, Grunweller A, Erdmann VA et al (2005) Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Biol 348:883–893
Sekhon BS, Kamboj SR (2010) Inorganic nanomedicine–part 1. Nanomedicine 6:516–522
Seki M, Honda Y (1995) Phosphorothioate antisense oligodeoxynucleotides capable of inhibiting hepatitis C virus gene expression: in vitro translation assay. J Biochem 118:1199–1204
Shepherd J, Waugh N, Hewitson P (2000) Combination therapy (interferon alfa and ribavirin) in the treatment of chronic hepatitis C: a rapid and systematic review. Health Technol Assess 4:1–67
Shippy R, Lockner R, Farnsworth M et al (1999) The hairpin ribozyme. Discovery, mechanism, and development for gene therapy. Mol Biotechnol 12:117–129
Smith AM, Mohs AM, Nie S (2009) Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat Nanotechnol 4:56–63
Song E, Zhu P, Lee SK et al (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23:709–717
Steele D, Kertsburg A, Soukup GA (2003) Engineered catalytic RNA and DNA: new biochemical tools for drug discovery and design. Am J Pharmacogenomics 3:131–144
Takamizawa A, Mori C, Fuke I et al (1991) Structure and organization of the hepatitis C virus genome isolated from human carriers. J Virol 65:1105–1113
Tallet-Lopez B, Aldaz-Carroll L, Chabas S et al (2003) Antisense oligonucleotides targeted to the domain IIId of the hepatitis C virus IRES compete with 40S ribosomal subunit binding and prevent in vitro translation. Nucleic Acids Res 31:734–742
Tomei L, Failla C, Santolini E et al (1993) NS3 is a serine protease required for processing of hepatitis C virus polyprotein. J Virol 67:4017–4026
Trepanier J, Tanner JE, Momparler RL et al (2006) Cleavage of intracellular hepatitis C RNA in the virus core protein coding region by deoxyribozymes. J Viral Hepat 13:131–138
Tsukiyama-Kohara K, Iizuka N, Kohara M et al (1992) Internal ribosome entry site within hepatitis C virus RNA. J Virol 66:1476–1483
Vester B, Lundberg LB, Sorensen MD et al (2002) LNAzymes: incorporation of LNA-type monomers into DNAzymes markedly increases RNA cleavage. J Am Chem Soc 124:13682–13683
Wahlestedt C, Salmi P, Good L et al (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci USA 97:5633–5638
Wakita T, Wands JR (1994) Specific inhibition of hepatitis C virus expression by antisense oligodeoxynucleotides. In vitro model for selection of target sequence. J Biol Chem 269:14205–14210
Walker MP, Appleby TC, Zhong W et al (2003) Hepatitis C virus therapies: current treatments, targets and future perspectives. Antivir Chem Chemother 14:1–21
Westerhout EM, Berkhout B (2007) A systematic analysis of the effect of target RNA structure on RNA interference. Nucleic Acids Res 35:4322–4330
Wu Y, Yu L, McMahon R et al (1999) Inhibition of bcr-abl oncogene expression by novel deoxyribozymes (DNAzymes). Hum Gene Ther 10:2847–2857
Xing Y, Rao J (2008) Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer Biomark 4:307–319
Yao ZQ, Zhou YX, Feng XM et al (1995) Specific inhibition of hepatitis b virus gene expression by an antisense oligonucleotide in vitro. Acta Virol 39:227–230
Zein NN (2000) Clinical significance of hepatitis C virus genotypes. Clin Microbiol Rev 13:223–235
Zhang H, Hanecak R, Brown-Driver V et al (1999) Antisense oligonucleotide inhibition of hepatitis C virus (HCV) gene expression in livers of mice infected with an HCV-vaccinia virus recombinant. Antimicrob Agents Chemother 43:347–353
Zhao W, Gao Y, Kandadai SA et al (2006) DNA polymerization on gold nanoparticles through rolling circle amplification: towards novel scaffolds for three-dimensional periodic nanoassemblies. Angew Chem Int Ed 45:2409–2413
Zhu Q, Oei Y, Mendel DB et al (2006) Novel robust hepatitis C virus mouse efficacy model. Antimicrob Agents Chemother 50:3260–3268
Zimmermann TS, Lee AC, Akinc A et al (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114
Acknowledgments
This work was supported by NRF grants (2010-0019306, 2011-0016385) and the WCU project (R33-10128) funded by the MEST, Republic of Korea.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Min, DH., Kim, DE. (2012). Suppression of Hepatitis C Viral Genome Replication with RNA-Cleaving Deoxyribozyme. In: Erdmann, V., Barciszewski, J. (eds) From Nucleic Acids Sequences to Molecular Medicine. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27426-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-27426-8_17
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27425-1
Online ISBN: 978-3-642-27426-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)