G2 Hermite Interpolation with Curves Represented by Multi-valued Trigonometric Support Functions

  • Bohumír Bastl
  • Miroslav Lávička
  • Zbyněk Šír
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6920)


It was recently proved in [27] that all rational hypocycloids and epicycloids are Pythagorean hodograph curves, i.e., rational curves with rational offsets. In this paper, we extend the discussion to a more general class of curves represented by trigonometric polynomial support functions. We show that these curves are offsets to translated convolutions of scaled and rotated hypocycloids and epicycloids. Using this result, we formulate a new and very simple G 2 Hermite interpolation algorithm based on solving a small system of linear equations. The efficiency of the designed method is then presented on several examples. In particular, we show how to approximate general trochoids, which, as we prove, are not Pythagorean hodograph curves in general.


Support Function Medial Axis Algebraic Curf Geometric Design Rational Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aigner, M., Jüttler, B., Gonzales-Vega, L., Schicho, J.: Parameterizing surfaces with certain special support functions, including offsets of quadrics and rationally supported surface. Journal of Symbolic Computation 44(2), 180–191 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Albrecht, G., Farouki, R.T.: Construction of C 2 Pythagorean hodograph interpolating splines by the homotopy method. Adv. Comp. Math. 5, 417–442 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bonandrini, G., Mimmi, G., Rottenbacher, C.: Theoretical analysis of internal epitrochoidal and hypotrochoidal machines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223(6), 1469–1480 (2009)zbMATHGoogle Scholar
  4. 4.
    Choi, H.I., Han, C.Y., Moon, H.P., Roh, K.H., Wee, N.S.: Medial axis transform and offset curves by Minkowski Pythagorean hodograph curves. Computer-Aided Design 31(1), 59–72 (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Farin, G.: Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann Publishers Inc., San Francisco (2002)Google Scholar
  6. 6.
    Farouki, R.T., Kuspa, B.K., Manni, C., Sestini, A.: Efficient solution of the complex quadratic tridiagonal system for C 2 PH quintic splines. Numer. Alg. 27, 35–60 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Farouki, R.T., Rampersad, J.: Cycles upon cycles: An anecdotal history of higher curves in science and engineering. In: Dæhlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces II, pp. 95–116. Vanderbilt University Press (1998)Google Scholar
  8. 8.
    Farouki, R.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Goodman, T.N.T., Meek, D.S., Walton, D.J.: An involute spiral that matches G 2 Hermite data in the plane. Comput. Aided Geom. Des. 26(7), 733–756 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gravesen, J., Jüttler, B., Šír, Z.: On rationally supported surfaces. Computer Aided Geometric Design 25, 320–331 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Habib, Z., Sakai, M.: Transition between concentric or tangent circles with a single segment of G 2 PH quintic curve. Comput. Aided Geom. Des. 25(4-5), 247–257 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Habib, Z., Sakai, M.: G 2 cubic transition between two circles with shape control. J. Comput. Appl. Math. 223(1), 133–144 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jaklič, G., Kozak, J., Krajnc, M., Vitrih, V., Žagar, E.: On interpolation by planar cubic G 2 Pythagorean-hodograph spline curves. Mathematics of Computation (79), 305–326 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jüttler, B.: Hermite interpolation by Pythagorean hodograph curves of degree seven. Math. Comp. 70, 1089–1111 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kosinka, J., Jüttler, B.: G 1 Hermite interpolation by Minkowski Pythagorean hodograph cubics. Computer Aided Geometric Design 23, 401–418 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kosinka, J., Jüttler, B.: C 1 Hermite interpolation by Pythagorean hodograph quintics in Minkowski space. Advances in Computational Mathematics 30, 123–140 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kosinka, J., Lávička, M.: On rational Minkowski Pythagorean hodograph curves. Computer Aided Geometric Design 27(7), 514–524 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kosinka, J., Šír, Z.: C 2 Hermite interpolation by Minkowski Pythagorean hodograph curves and medial axis transform approximation. Computer Aided Geometric Design 27(8), 631–643 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lávička, M., Bastl, B.: Rational hypersurfaces with rational convolutions. Computer Aided Geometric Design 24(7), 410–426 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lávička, M., Bastl, B., Šír, Z.: Reparameterization of curves and surfaces with respect to their convolution. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, J.-L., Mørken, K., Schumaker, L.L. (eds.) MMCS 2008. LNCS, vol. 5862, pp. 285–298. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Meek, D.S., Walton, D.J.: Planar spirals that match G 2 Hermite data. Comput. Aided Geom. Des. 15(2), 103–126 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Meek, D.S., Walton, D.J.: Planar G 2 Hermite interpolation with some fair, C-shaped curves. J. Comput. Appl. Math. 139(1), 141–161 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Moon, H.: Minkowski Pythagorean hodographs. Computer Aided Geometric Design 16, 739–753 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Pelosi, F., Sampoli, M.L., Farouki, R.T., Manni, C.: A control polygon scheme for design of planar C 2 PH quintic spline curves. Computer Aided Geometric Design 24, 28–52 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sabin, M.: A class of surfaces closed under five important geometric operations. Technical Report VTO/MS/207, British Aircraft Corporation (1974),
  26. 26.
    Sánchez-Reyes, J.: Bézier representation of epitrochoids and hypotrochoids. Computer-Aided Design 31(12), 747–750 (1999)CrossRefzbMATHGoogle Scholar
  27. 27.
    Šír, Z., Bastl, B., Lávička, M.: Hermite interpolation by hypocycloids and epicycloids with rational offsets. Computer Aided Geometric Design 27, 405–417 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Šír, Z., Gravesen, J., Jüttler, B.: Computing convolutions and Minkowski sums via support functions. In: Chenin, P., et al. (eds.) Curve and Surface Design. Proceedings of the 6th International Conference on Curves and Surfaces, Avignon 2006, pp. 244–253. Nashboro Press (2007)Google Scholar
  29. 29.
    Šír, Z., Gravesen, J., Jüttler, B.: Curves and surfaces represented by polynomial support functions. Theoretical Computer Science 392(1-3), 141–157 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Vršek, J., Lávička, M.: On convolution of algebraic curves. Journal of symbolic computation 45(6), 657–676 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Walton, D.J., Meek, D.S.: G 2 curve design with a pair of Pythagorean Hodograph quintic spiral segments. Comput. Aided Geom. Des. 24(5), 267–285 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Walton, D.J., Meek, D.S.: G 2 Hermite interpolation with circular precision. Comput. Aided Des. 42(9), 749–758 (2010)CrossRefzbMATHGoogle Scholar
  33. 33.
    Yates, R.C.: Curves and their properties. National Council of Teachers of Mathematics (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bohumír Bastl
    • 1
  • Miroslav Lávička
    • 1
  • Zbyněk Šír
    • 1
  1. 1.Faculty of Applied Sciences, Department of MathematicsUniversity of West BohemiaPlzeňCzech Republic

Personalised recommendations