Skip to main content

Design of Multiresolution Operators Using Statistical Learning Tools: Application to Compression of Signals

  • Conference paper
Curves and Surfaces (Curves and Surfaces 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6920))

Included in the following conference series:

Abstract

Using multiresolution based on Harten’s framework [J. Appl. Numer. Math., 12 (1993), pp. 153–192.] we introduce an alternative to construct a prediction operator using Learning statistical theory. This integrates two ideas: generalized wavelets and learning methods, and opens several possibilities in the compressed signal context. We obtain theoretical results which prove that this type of schemes (LMR schemes) are equal to or better than the classical schemes. Finally, we compare traditional methods with the algorithm that we present in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amat, S., Donat, R., Liandrat, J., Trillo, J.C.: A fully adaptive PPH multi-resolution scheme for image processing. Math. Comput. Modelling 46, 2–11 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aràndiga, F., Cohen, A., Yáñez, D.F.: Learning-based multiresolution: Application to compress digital images (in preparation)

    Google Scholar 

  3. Aràndiga, F., Donat, R., Harten, A.: Multiresolution based on weighted averages of the hat function II: Non-linear reconstruction technique. SIAM J. Numer. Anal. 20, 1053–1093 (1999)

    MATH  Google Scholar 

  4. Aràndiga, F., Donat, R.: Nonlinear multiscale decompositions: The approach of A. Harten. Numerical Algorithms 23, 175–216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  6. Cohen, A., Dahmen, W., Daubechies, I., DeVore, R.: Tree approximation and optimal encoding. Appl. Comp. Harm. Anal. 11, 192–226 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, A., Daubechies, I., Feauveau, J.: Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45, 485–560 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, A.: Numerical Analysis of Wavelet Methods. Elsevier, Paris (2003)

    MATH  Google Scholar 

  9. Donoho, D.L.: Unconditional bases are optimal bases for data compression and for statistical estimation. Appl. Comp. Harm. Annal. 1, 110–115 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer, New York (2001)

    MATH  Google Scholar 

  11. Getreuer, P., Meyer, F.: ENO multiresolution schemes with general discretizations. SIAM J. Numer. Anal. 46, 2953–2977 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control (a tribute to M. Vidyasagar). LNCIS, vol. 371, pp. 95–110. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming (web page and software) (2009), http://stanford.edu/~boyd/cvx

  14. Harten, A.: Discrete multiresolution analysis and generalized wavelets. J. Appl. Numer. Math. 12, 153–192 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harten, A.: Multiresolution Representation of data: General framework. SIAM J. Numer. Anal. 33, 1205–1256 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mallat, S.: A wavelet tour of signal processing. Academic Press, London (1998)

    MATH  Google Scholar 

  17. Vapnik, V.N.: The Nature of Statistical Learning. Springer, New York (1995)

    Book  MATH  Google Scholar 

  18. Yáñez, D.F.: Learning Multiresolution: Transformaciones Multiescala derivadas de la Teoría estadística de Aprendizaje, Phd. Thesis, University of Valencia (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aràndiga, F., Cohen, A., Yáñez, D.F. (2012). Design of Multiresolution Operators Using Statistical Learning Tools: Application to Compression of Signals. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27413-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27412-1

  • Online ISBN: 978-3-642-27413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics