Advertisement

Interpolation Function of Generalized q −Bernstein-Type Basis Polynomials and Applications

  • Yilmaz Simsek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6920)

Abstract

The main aim of this paper is to construct a new generating function for the generalized q-Bernstein-type basis polynomials and to derive fundamental properties of these polynomials. We establish relations between the generalized q-Bernstein-type basis polynomials, the Bernoulli polynomials of higher-order and the generalized Stirling numbers of the second kind. By applying Mellin transform to this generating function, we also construct an interpolating function, which interpolates the generalized q-Bernstein-type basis polynomials at negative integers. Furthermore, we give applications on the generalized q-Bernstein-type basis polynomials and the Bézier curves.

Keywords

Bernstein basis polynomials Generating function q- Bernstein basis polynomials Bernoulli polynomials of higher-order Stirling numbers of the second kind interpolating function Mellin transform Gamma function beta function Bézier curves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acikgoz, M., Araci, S.: On generating function of the Bernstein polynomials. In: Numerical Analysis and Applied Mathematics, Amer. Inst. Phys. Conf. Proc., vol. CP1281, pp. 1141–1143 (2010)Google Scholar
  2. 2.
    Berg, S.: Some properties and applications of a ratio of Stirling numbers of the second kind. Scand. J. Statist. 2, 91–94 (1975)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bernstein, S.N.: Démonstration du théorème de Weierstrass fondée sur la calcul des probabilités. Commun. Kharkov Math. Soc. 13, 1–2 (1912)zbMATHGoogle Scholar
  4. 4.
    Busé, L., Goldman, R.: Division algorithms for Bernstein polynomials. Comput. Aided Geom. Design. 25, 850–865 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cakić, N.P., Milovanović, G.V.: On generalized Stirling numbers and polynomials. Math. Balkanica 18, 241–248 (2004)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Garloff, J.: The Bernstein expansion and its applications. J. Am. Romanian Acad. 25-27, 80–85 (2003)Google Scholar
  7. 7.
    Goldman, R.: An Integrated Introduction to Computer Graphics and Geometric Modeling. CRC Press, Taylor and Francis (2009)Google Scholar
  8. 8.
    Goldman, R.: Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling. Morgan Kaufmann Publishers, Academic Press (2002)Google Scholar
  9. 9.
    Goldman, R.: Identities for the Univariate and Bivariate Bernstein Basis Functions. In: Paeth, A. (ed.) Graphics Gems V, pp. 149–162. Academic Press, London (1995)CrossRefGoogle Scholar
  10. 10.
    Gould, H.W.: A theorem concerning the Bernstein polynomials. Math. Magazine 31, 259–264 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Guan, Z.: Iterated Bernstein polynomial approximations. arXiv:0909.0684v3Google Scholar
  12. 12.
    Joarder, A.H., Mahmood, M.: An inductive derivation of Stirling numbers of the second kind and their applications in Statistics. J. Appl. Math. Decis. Sci. 1, 151–157 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kowalski, E.: Bernstein polynomials and Brownian motion. Amer. Math. Mon. 113, 865–886 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Laurent, P.-J., Sablonnière, P.: Pierre Bézier: An engineer and a mathematician. Comput. Aided Geom. Design. 18, 609–617 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lewanowicz, S., Woźny, P.: Generalized Bernstein polynomials. BIT Numer. Math. 44, 63–78 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lewanowicz, S., Woźny, P.: Dual generalized Bernstein basis. J. Approx. Theory 138, 129–150 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lopez, L., Temme, N.M.: Hermite polynomials in asymptotic representations of generalized Bernoulli, Euler, Bessel and Buchholz polynomials. Modelling, Analysis and Simulation (MAS), MAS-R9927 September 30, 1–14 (1999)Google Scholar
  18. 18.
    Morin, G., Goldman, R.: On the smooth convergence of subdivision and degree elevation for Bézier curves. Comput. Aided Geom. Design. 18, 657–666 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Oruc, H., Tuncer, N.: On the convergence and Iterates of q -Bernstein polynomials. J. Approx. Theory 117, 301–313 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ostrovska, S.: The unicity theorems for the limit q-Bernstein opera. Appl. Anal. 88, 161–167 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Phillips, G.M.: Bernstein polynomials based on the q -integers. The heritage of P. L. Chebyshev: a Festschrift in honor of the 70th birthday of T. J. Rivlin, Ann. Numer. Math. 4, 511–518 (1997)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Phillips, G.M.: Interpolation and approximation by polynomials, CMS Books in Mathematics/ Ouvrages de Mathématiques de la SMC, vol. 14. Springer, New York (2003)CrossRefGoogle Scholar
  23. 23.
    Phillips, G.M.: A survey of results on the q-Bernstein polynomials. IMA J. Numer. Anal. Advance Access 1–12 (June 23, 2009); published onlineGoogle Scholar
  24. 24.
  25. 25.
    Simsek, Y.: Twisted \(\left( h,q\right) \)-Bernoulli numbers and polynomials related to twisted \(\left( h,q\right) \)-zeta function and L-function. J. Math. Anal. Appl. 324, 790–804 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Simsek, Y.: On q-deformed Stirling numbers. International Journal of Applied Mathematics & Statistics, arXiv:0711.0481v1 (to appear)Google Scholar
  27. 27.
    Simsek, Y., Kurt, V., Kim, D.: New approach to the complete sum of products of the twisted (h,q)-Bernoulli numbers and polynomials. J. Nonlinear Math. Phys. 14, 44–56 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Simsek, Y.: Construction a new generating function of Bernstein type polynomials. Appl. Math. Comput. 218(3), 1072–1076 (2011), doi:10.1016/j.amc.2011.01.074MathSciNetzbMATHGoogle Scholar
  29. 29.
    Simsek, Y.: Generating functions for the Bernstein polynomials: A unified approach to deriving identities for the Bernstein basis functions. arXiv:1012.5538v1Google Scholar
  30. 30.
    Simsek, Y., Acikgoz, M.: A new generating function of (q-) Bernstein-type polynomials and their interpolation function. Abstr. Appl. Anal., Article ID 769095, 1–12 (2010)Google Scholar
  31. 31.
    Stancu, D.D.: Asupra unci generalizano a polynomdorlui Bernstein. Studia Univ. Babés-Bolyai 2, 31–45 (1969)Google Scholar
  32. 32.
    Temme, N.M.: Asymptotic estimates of Stirling numbers. Stud. Appl. Math. 89, 233–243 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Toscano, L.: Generalizzazioni dei polinomi di Laguerre e dei polinomi attuariali. Riv. Mat. Univ. Purma. 2, 191–226 (1970)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Woźny, P., Lewanowicz, S.: Constrained multi-degree reduction of triangular Bézier surfaces using dual Bernstein polynomials. J. Comput. Appl. Math. 235, 785–804 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yilmaz Simsek
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceUniversity of AkdenizAntalyaTurkey

Personalised recommendations