Skip to main content

Non-degenerate Developable Triangular Bézier Patches

  • Conference paper
  • 3020 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6920)

Abstract

In this talk we show a construction for characterising developable surfaces in the form of Bézier triangular patches. It is shown that constructions used for rectangular patches are not useful, since they provide degenerate triangular patches. Explicit constructions of non-degenerate developable triangular patches are provided.

Keywords

  • Developable surfaces
  • triangular patches

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-27413-8_13
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-27413-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Postnikov, M.M.: Lectures in Geometry: Linear Algebra and Differential Geometry. “Nauka”, Moscow (1979)

    Google Scholar 

  2. Struik, D.J.: Lectures on classical differential geometry, 2nd edn. Dover Publications Inc., New York (1988)

    MATH  Google Scholar 

  3. Mancewicz, M., Frey, W.: Developable surfaces: properties, representations and methods of design. Technical report, GM Research Publication GMR-7637 (1992)

    Google Scholar 

  4. Frey, W., Bindschadler, D.: Computer aided design of a class of developable bézier surfaces. Technical report, GM Research Publication R&D-8057 (1993)

    Google Scholar 

  5. Aumann, G.: Interpolation with developable Bézier patches. Comput. Aided Geom. Design 8(5), 409–420 (1991)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Lang, J., Röschel, O.: Developable (1,n)-Bézier surfaces. Comput. Aided Geom. Design 9(4), 291–298 (1992)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Chalfant, J., Maekawa, T.: Design for manufacturing using b-spline developable surfaces. J. Ship Research 42(3), 207–215 (1998)

    MATH  Google Scholar 

  8. Bodduluri, R., Ravani, B.: Design of developable surfaces using duality between plane and point geometries. Computer Aided Design 25(10), 621–632 (1993)

    CrossRef  MATH  Google Scholar 

  9. Pottmann, H., Farin, G.: Developable rational Bézier and B-spline surfaces. Comput. Aided Geom. Design 12(5), 513–531 (1995)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Pottmann, H., Wallner, J.: Approximation algorithms for developable surfaces. Comput. Aided Geom. Design 16(6), 539–556 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Chu, C.H., Séquin, C.H.: Developable bézier patches: properties and design. Computer Aided Design 34(7), 511–527 (2002)

    CrossRef  MATH  Google Scholar 

  12. Aumann, G.: A simple algorithm for designing developable Bézier surfaces. Comput. Aided Geom. Design 20(8-9), 601–619 (2003); In memory of Professor J. Hoschek

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Aumann, G.: Degree elevation and developable Bézier surfaces. Comput. Aided Geom. Design 21(7), 661–670 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Fernández-Jambrina, L.: B-spline control nets for developable surfaces. Comput. Aided Geom. Design 24(4), 189–199 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Farin, G.: Triangular bernstein-bézier patches. Comput. Aided Geom. Design 3(2), 83–127 (1986)

    CrossRef  MathSciNet  Google Scholar 

  16. Juhász, I., Róth, Á.: Bézier surfaces with linear isoparametric lines. Comput. Aided Geom. Design 25(6), 385–396 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Farin, G.: Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann Publishers Inc., San Francisco (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cantón, A., Fernández-Jambrina, L. (2012). Non-degenerate Developable Triangular Bézier Patches. In: , et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27413-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27412-1

  • Online ISBN: 978-3-642-27413-8

  • eBook Packages: Computer ScienceComputer Science (R0)