Polarization Sensitivity

  • U. Schmidt-Erfurth
  • F. Schlanitz
  • M. Bolz
  • C. Vass
  • J. Lammer
  • C. Schütze
  • M. Pircher
  • E. Götzinger
  • B. Baumann
  • C. K. Hitzenberger
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Optical coherence tomography (OCT) (Huang et al. Science 254(5035): 1178–1181, 1991; Fercher et al. Rep Prog Phys 66:239–303, 2003; Drexler and Fujimoto Prog Retin Eye Res 27(1):45–88, 2008) is a well-established tool for high-resolution cross-sectional imaging of human ocular structures. Despite its great success in improving ocular diagnostic imaging, conventional OCT cannot directly differentiate between different tissues. However, polarization-sensitive (PS) OCT is able to generate tissue-specific contrast that can be further used to segment ocular structures and to obtain quantitative information.

Keywords

Optical Coherence Tomography Retinal Pigment Epithelium Retinal Nerve Fiber Layer Optic Nerve Head Diabetic Macular Edema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to gratefully acknowledge the Austrian Science Fund (FWF grants P16776-N02 and P19624-B02) and EU-Project FUN OCT (FP7 HEALTH, Contract No. 201880) for the financial support.

References

  1. 1.
    D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, Optical coherence tomography. Science 254(5035), 1178–1181 (1991)Google Scholar
  2. 2.
    A.F. Fercher, W. Drexler, C.K. Hitzenberger, T. Lasser, Optical coherence tomography—principles and applications. Rep. Prog. Phys. 66, 239–303 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    W. Drexler, J.G. Fujimoto, State-of-the-art retinal optical coherence tomography. Prog. Retin. Eye Res. 27(1), 45–88 (2008)CrossRefGoogle Scholar
  4. 4.
    A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. Elzaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117(1–2), 43–48 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    G. Häusler, M.W. Lindner, “Coherence radar” and “spectral radar”—New tools for dermatological diagnosis. J. Biomed. Opt. 3, 21–31 (1998)CrossRefGoogle Scholar
  6. 6.
    M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A.F. Fercher, In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7(3), 457–463 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express. 11(8), 889–894 (2003)Google Scholar
  8. 8.
    J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28(21), 2067–2069 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    M.A. Choma, M.V. Sarunic, C.H. Yang, J.A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express. 11(18), 2183–2189 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    T.C. Chen, B. Cense, M.C. Pierce, N. Nassif, B.H. Park, S.H. Yun, B.R. White, B.E. Bouma, G.J. Tearney, J.F. de Boer, Spectral domain optical coherence tomography—Ultra-high speed, ultra-high resolution ophthalmic imaging. Arch. Ophthalmol. 123(12), 1715–1720 (2005)CrossRefGoogle Scholar
  11. 11.
    U. Schmidt-Erfurth, R.A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A.F. Fercher, W. Drexler, Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005)CrossRefGoogle Scholar
  12. 12.
    M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, T. Ko, J.S. Schuman, A. Kowalczyk, J.S. Duker, Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112(10), 1734–1746 (2005)CrossRefGoogle Scholar
  13. 13.
    M.R. Hee, D. Huang, E.A. Swanson, J.G. Fujimoto, Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J. Opt. Soc. Am. B Opt. Phys. 9(6), 903–908 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    J.F. de Boer, T.E. Milner, M.J.C. van Gemert, J.S. Nelson, Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 22(12), 934–936 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    J.F. de Boer, T.E. Milner, J.S. Nelson, Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography. Opt. Lett. 24(5), 300–302 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    G. Yao, L.V. Wang, Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography. Opt. Lett. 24(8), 537–539 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    S.L. Jiao, L.H.V. Wang, Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography. J. Biomed. Opt. 7(3), 350–358 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    C.K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, A.F. Fercher, Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt. Express. 9(13), 780–790 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    B.H. Park, M.C. Pierce, B. Cense, J.F. de Boer, Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components. Opt. Lett. 29(21), 2512–2514 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    M. Todorovi, S. Jiao, L.V. Wang, G. Stoica, Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography. Opt. Lett. 29(20), 2402–2404 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, C.K. Hitzenberger, Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. Opt. Express. 16(21), 16410–16422 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    E. Götzinger, M. Pircher, C.K. Hitzenberger, High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Opt. Express. 13(25), 10217–10229 (2005)CrossRefGoogle Scholar
  23. 23.
    M. Pircher, E. Götzinger, B. Baumann, C.K. Hitzenberger, Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina. J. Biomed. Opt. 12(4), 041210 (2007)Google Scholar
  24. 24.
    B. Baumann, E. Gotzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, C.K. Hitzenberger, Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography. J. Biomed. Opt. 15(6), 061704 (2010)Google Scholar
  25. 25.
    L.J. Bour, Polarized light and the eye, in Visual Optics and Instrumentation, ed. by W.N. Charman (CRC Press, Boca Raton, FL, 1991), pp. 310–325Google Scholar
  26. 26.
    E. Götzinger, M. Pircher, M. Sticker, A.F. Fercher, C.K. Hitzenberger, Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography. J. Biomed. Opt. 9(1), 94–102 (2004)CrossRefGoogle Scholar
  27. 27.
    B. Baumann, E. Götzinger, M. Pircher, C.K. Hitzenberger, Single camera based spectral domain polarization sensitive optical coherence tomography. Opt. Express. 15(3), 1054–1063 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    M. Yamanari, S. Makita, Y. Yasuno, Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation. Opt. Express. 16(8), 5892–5906 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    A.W. Dreher, K. Reiter, R.N. Weinreb, Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer. Appl. Opt. 31(19), 3730–3735 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    B. Cense, T.C. Chen, B.H. Park, M.C. Pierce, J.F. de Boer, Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004)CrossRefGoogle Scholar
  31. 31.
    H.B. Brink, G.J. van Blokland, Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry. J. Opt. Soc. Am. A 5(1), 49–57 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, C.K. Hitzenberger, Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT. Opt. Express. 12(24), 5940–5951 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Götzinger, O. Findl, U. Schmidt-Erfurth, C.K. Hitzenberger, Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium. Br. J. Ophthalmol. 92(2), 204–209 (2008)CrossRefGoogle Scholar
  34. 34.
    E. Götzinger, B. Baumann, M. Pircher, C.K. Hitzenberger, Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography. Opt. Express. 17(25), 22704–22717 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    N. Kemp, H. Zaatari, J. Park, H.G. Rylander Iii, T. Milner, Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT). Opt. Express. 13(12), 4611–4628 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    J.M. Schmitt, S.H. Xiang, Cross-polarized backscatter in optical coherence tomography of biological tissue. Opt. Lett. 23(13), 1060–1062 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    S. Jiao, G. Yao, L.V. Wang, Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography. Appl. Opt. 39(34), 6318–6324 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, C.K. Hitzenberger, Human macula investigated in vivo with polarization-sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 47(12), 5487–5494 (2006)CrossRefGoogle Scholar
  39. 39.
    M. Pircher, E. Goetzinger, R. Leitgeb, C.K. Hitzenberger, Transversal phase resolved polarization sensitive optical coherence tomography. Phys. Med. Biol. 49(7), 1257–1263 (2004)CrossRefGoogle Scholar
  40. 40.
    E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, C.K. Hitzenberger, Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina. Opt. Express. 17(5), 4151–4165 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    B. Baumann, E. Götzinger, M. Pircher, C.K. Hitzenberger, Measurements of depolarization distribution in the healthy human macula by polarization sensitive OCT. J. Biophotonics. 2(6–7), 426–434 (2009)CrossRefGoogle Scholar
  42. 42.
    B. Baumann, S.O. Baumann, T. Konegger, M. Pircher, E. Götzinger, H. Sattmann, M. Litschauer, C.K. Hitzenberger, Polarization sensitive optical coherence tomography of melanin provides tissue inherent contrast based on depolarization. Proc. SPIE 7554, 75541M (2010)ADSCrossRefGoogle Scholar
  43. 43.
    E. Götzinger, M. Pircher, M. Sticker, A.F. Fercher, C.K. Hitzenberger, Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography. J. Biomed. Opt. 9(1), 94–102 (2004)CrossRefGoogle Scholar
  44. 44.
    E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, C.K. Hitzenberger, Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 48(8), 3551–3558 (2007)CrossRefGoogle Scholar
  45. 45.
    A. Miyazawa, M. Yamanari, S. Makita, M. Miura, K. Kawana, K. Iwaya, H. Goto, Y. Yasuno, Tissue discrimination in anterior eye using three optical parameters obtained by polarization sensitive optical coherence tomography. Opt. Express. 17(20), 17426–17440 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, M. Miura, Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography. Opt. Express. 17(5), 3980–3996 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    M.R. Hee, J.A. Izatt, E.A. Swanson, D. Huang, J.S. Schuman, C.P. Lin, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography of the human retina. Arch. Ophthalmol. 113(3), 325–332 (1995)CrossRefGoogle Scholar
  48. 48.
    C. Ahlers, U. Schmidt-Erfurth, Three-dimensional high resolution OCT imaging of macular pathology. Opt. Express. 17(5), 4037–4045 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    M.L. Gabriele, G. Wollstein, H. Ishikawa, J. Xu, J. Kim, L. Kagemann, L.S. Folio, J.S. Schuman, Three dimensional optical coherence tomography imaging: advantages and advances. Prog. Retin. Eye Res. 29(6), 556–579 (2010)CrossRefGoogle Scholar
  50. 50.
    N. Congdon, B. O’Colmain, C.C. Klaver, R. Klein, B. Muñoz, D.S. Friedman, J. Kempen, H.R. Taylor, P. Mitchell, Eye Diseases Prevalence Research Group, Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthalmol. 122(4), 477–485 (2004)Google Scholar
  51. 51.
    S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G.P. Pokharel, S.P. Mariotti, Global data on visual impairment in the year 2002. Bull. World Health Organ. 82(11), 844–851 (2004)Google Scholar
  52. 52.
    D.S. Friedman, B.J. O’Colmain, B. Muñoz, S.C. Tomany, C. McCarty, P.T. de Jong, B. Nemesure, P. Mitchell, J. Kempen, Eye Diseases Prevalence Research Group, Prevalence of age-related macular degeneration in the United States. Arch. Ophthalmol. 122(4), 564–572 (2004)Google Scholar
  53. 53.
    M.A. Zarbin, Current concepts in the pathogenesis of age-related macular degeneration. Arch. Ophthalmol. 122(4), 598–614 (2004)CrossRefGoogle Scholar
  54. 54.
    H.E. Grossniklaus, W.R. Green, Choroidal neovascularization. Am. J. Ophthalmol. 137(3), 496–503 (2004)CrossRefGoogle Scholar
  55. 55.
    R.D. Jager, W.F. Mieler, J.W. Miller, Age-related macular degeneration. N. Engl. J. Med. 358(24), 2606–2617 (2008)CrossRefGoogle Scholar
  56. 56.
    W. Green, Histopathology of age-related macular degeneration. Mol. Vis. 5, 27 (1999)Google Scholar
  57. 57.
    A. Abdelsalam, L. Del Priore, M. Zarbin, Drusen in age-related macular degeneration: pathogenesis, natural course, and laser photocoagulation-induced regression. Surv. Ophthalmol. 44(1), 1–29 (1999)CrossRefGoogle Scholar
  58. 58.
    L.V. Johnson, S. Ozaki, M.K. Staples, P.A. Erickson, D.H. Anderson, A potential role for immune complex pathogenesis in drusen formation. Exp. Eye Res. 70(4), 441–449 (2000)CrossRefGoogle Scholar
  59. 59.
    G.S. Hageman, P.J. Luthert, N.H. Victor Chong, L.V. Johnson, D.H. Anderson, R.F. Mullins, An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog. Retin. Eye Res. 20(6), 705–732 (2001)CrossRefGoogle Scholar
  60. 60.
    C.A. Curcio, N.E. Medeiros, C.L. Millican, Photoreceptor loss in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 37(7), 1236–1249 (1996)Google Scholar
  61. 61.
    S.H. Sarks, J.J. Arnold, M.C. Killingsworth, J.P. Sarks, Early drusen formation in the normal and aging eye and their relation to age related maculopathy: a clinicopathological study. Br. J. Ophthalmol. 83(3), 358–368 (1999)CrossRefGoogle Scholar
  62. 62.
    H. Al-Hussaini, M. Schneiders, P. Lundh, G. Jeffery, Drusen are associated with local and distant disruptions to human retinal pigment epithelium cells. Exp. Eye Res. 88(3), 610–612 (2009)CrossRefGoogle Scholar
  63. 63.
    The Age-Related Eye Disease Study Research Group, Risk factors associated with age-related macular degeneration. A case-control study in the age-related eye disease study: age-related eye disease study report number 3. Ophthalmology 107(12), 2224–2232 (2000)Google Scholar
  64. 64.
    L. Zhao, Z. Wang, Y. Liu, Y. Song, Y. Li, A.M. Laties, R. Wen, Translocation of the retinal pigment epithelium and formation of sub-retinal pigment epithelium deposit induced by subretinal deposit. Mol. Vis. 13, 873–880 (2007)Google Scholar
  65. 65.
    H.P. Scholl, S.S. Dandekar, T. Peto, C. Bunce, W. Xing, S. Jenkins, A.C. Bird, What is lost by digitizing stereoscopic fundus color slides for macular grading in age-related maculopathy and degeneration? Ophthalmology 111(1), 125–132 (2004)CrossRefGoogle Scholar
  66. 66.
    F.G. Schlanitz, B. Baumann, C. Ahlers, T. Spalek, S.M. Schriefl, I. Golbaz, M. Pircher, E. Gotzinger, C.K. Hitzenberger, U. Schmidt-Erfurth, Automatic delineation of drusen with polarization-sensitive optical coherence tomography. ARVO Poster #1783/A532-2010Google Scholar
  67. 67.
    F.G. Schlanitz, C. Ahlers, S. Sacu, C. Schütze, M. Rodriguez, S. Schriefl, I. Golbaz, T. Spalek, G. Stock, U. Schmidt-Erfurth, Performance of drusen detection by spectral-domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 51(12), 6715–6721 (2010)CrossRefGoogle Scholar
  68. 68.
    M. Rudolf, M.E. Clark, M.F. Chimento, C.M. Li, N.E. Medeiros, C.A. Curcio, Prevalence and morphology of druse types in the macula and periphery of eyes with age-related maculopathy. Invest. Ophthalmol. Vis. Sci. 49(3), 1200–1209 (2008)CrossRefGoogle Scholar
  69. 69.
    A.A. Khanifar, A.F. Koreishi, J.A. Izatt, C.A. Toth, Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration. Ophthalmology 115(11), 1883–1890 (2008)CrossRefGoogle Scholar
  70. 70.
    C.N. Keilhauer, F.C. Delori, Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest. Ophthalmol. Vis. Sci. 47(8), 3556–3564 (2006)CrossRefGoogle Scholar
  71. 71.
    A.C. Bird, N.M. Bressler, S.B. Bressler, I.H. Chisholm, G. Coscas, M.D. Davis, P.T. de Jong, C.C. Klaver, B.E. Klein, R. Klein, An international classification and grading system for age-related maculopathy and age-related macular degeneration. Surv. Ophthalmol. 39(5), 367–374 (1995)CrossRefGoogle Scholar
  72. 72.
    J.S. Sunness, J. Gonzalez-Baron, C.A. Applegate, N.M. Bressler, Y. Tian, B. Hawkins, Y. Barron, A. Bergman, Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration. Ophthalmology 106(9), 1768–1779 (1999)CrossRefGoogle Scholar
  73. 73.
    J.S. Sunness, The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration. Mol. Vis. 5, 25 (1999)Google Scholar
  74. 74.
    J.S. Sunness, E. Margalit, D. Srikumaran, C.A. Applegate, Y. Tian, D. Perry, B.S. Hawkins, N.M. Bressler, The long-term natural history of geographic atrophy from age-related macular degeneration: enlargement of atrophy and implications for interventional clinical trials. Ophthalmology 114(2), 271–277 (2007)CrossRefGoogle Scholar
  75. 75.
    M. Fleckenstein, P. Charbel Issa, H.M. Helb, S. Schmitz-Valckenberg, R.P. Finger, H.P. Scholl, K.U. Loeffler, F.G. Holz, High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 49(9), 4137–4144 (2008)CrossRefGoogle Scholar
  76. 76.
    B.J. Lujan, P.J. Rosenfeld, G. Gregori, F. Wang, R.W. Knighton, W.J. Feuer, C.A. Puliafito, Spectral domain optical coherence tomographic imaging of geographic atrophy. Ophthalmic Surg. Lasers Imaging 40(2), 96–101 (2009)CrossRefGoogle Scholar
  77. 77.
    M. Fleckenstein, S. Schmitz-Valckenberg, C. Adrion, I. Krämer, N. Eter, H.M. Helb, C.K. Brinkmann, P. Charbel Issa, U. Mansmann, F.G. Holz, Tracking progression with spectral-domain optical coherence tomography in geographic atrophy caused by age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 51(8), 3846–3852 (2010)CrossRefGoogle Scholar
  78. 78.
    C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C.K. Hitzenberger, U. Schmidt-Erfurth, Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 51(4), 2149–2157 (2010)CrossRefGoogle Scholar
  79. 79.
    F.G. Holz, C. Bellman, S. Staudt, F. Schütt, H.E. Völcker, Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 42(5), 1051–1056 (2001)Google Scholar
  80. 80.
    F.G. Holz, A. Bindewald-Wittich, M. Fleckenstein, J. Dreyhaupt, H.P. Scholl, S. Schmitz-Valckenberg, FAM-Study Group, Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. Am. J. Ophthalmol. 143(3), 463–472 (2007)Google Scholar
  81. 81.
    U.E.K. Wolf-Schnurrbusch, V. Enzmann, C.K. Brinkmann, S. Wolf, Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination. Invest. Ophthalmol. Vis. Sci. 49(7), 3095–3099 (2008)CrossRefGoogle Scholar
  82. 82.
    R.P. Singh, C. Patel, J.E. Sears, Management of subretinal macular haemorrhage by direct administration of tissue plasminogen activator. Br. J. Ophthalmol. 90(4), 429–431 (2006)CrossRefGoogle Scholar
  83. 83.
    C.A. Toth, L.S. Morse, L.M. Hjelmeland, M.B. Landers 3rd, Fibrin directs early retinal damage after experimental subretinal hemorrhage. Arch. Ophthalmol. 109(5), 723–729 (1991)CrossRefGoogle Scholar
  84. 84.
    J.D. Benner, A. Hay, M.B. Landers 3rd, L.M. Hjelmeland, L.S. Morse, Fibrinolytic-assisted removal of experimental subretinal hemorrhage within seven days reduces outer retinal degeneration. Ophthalmology 101(4), 672–681 (1994)Google Scholar
  85. 85.
    R.L. Avery, S. Fekrat, B.S. Hawkins, N.M. Bressler, Natural history of subfoveal subretinal hemorrhage in age-related macular degeneration. Retina 16(3), 183–189 (1996)CrossRefGoogle Scholar
  86. 86.
    S.R. Bennett, J.C. Folk, C.F. Blodi, M. Klugman, Factors prognostic of visual outcome in patients with subretinal hemorrhage. Am. J. Ophthalmol. 109(1), 33–37 (1990)Google Scholar
  87. 87.
    M.H. Berrocal, M.L. Lewis, H.W. Flynn Jr, Variations in the clinical course of submacular hemorrhage. Am. J. Ophthalmol. 122(4), 486–493 (1996)Google Scholar
  88. 88.
    M.T.S. Tennant, J.L. Borrillo, C.D. Regillo, Management of submacular hemorrhage. Ophthalmol. Clin. North Am. 15(4), 445vi–452vi (2002)Google Scholar
  89. 89.
    M.A. Hochman, C.M. Seery, M.A. Zarbin, Pathophysiology and management of subretinal hemorrhage. Surv. Ophthalmol. 42(3), 195–213 (1997)CrossRefGoogle Scholar
  90. 90.
    U.M. Schmidt-Erfurth, C. Pruente, Management of neovascular age-related macular degeneration. Prog. Retin. Eye Res. 26(4), 437–451 (2007)CrossRefGoogle Scholar
  91. 91.
    C. Ahlers, I. Golbaz, G. Stock, A. Fous, S. Kolar, C. Pruente, U. Schmidt-Erfurth, Time course of morphologic effects on different retinal compartments after ranibizumab therapy in age-related macular degeneration. Ophthalmology 115(8), e39–e46 (2008)CrossRefGoogle Scholar
  92. 92.
    N. Shams, T. Ianchulev, Role of vascular endothelial growth factor in ocular angiogenesis. Ophthalmol. Clin. North Am. 19(3), 335–344 (2006)Google Scholar
  93. 93.
    A. Kvanta, P.V. Algvere, L. Berglin, S. Seregard, Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest. Ophthalmol. Vis. Sci. 37(9), 1929–1934 (1996)Google Scholar
  94. 94.
    C. Schuetze, C. Ahlers, B. Baumann, M. Pircher, E. Götzinger, R. Donner, J. Ofner, C. Hitzenberger, U. Schmidt-Erfurth, Automatic segmentation of subretinal fluid in choroidal neovascularization using polarization-sensitive optical coherence tomography. ARVO Poster #4935/A552-2010Google Scholar
  95. 95.
    A.C. Bird, Doyne Lecture. Pathogenesis of retinal pigment epithelial detachment in the elderly; the relevance of Bruch’s membrane change. Eye (Lond). 5(Pt 1), 1–12 (1991)Google Scholar
  96. 96.
    S.H. Sarks, New vessel formation beneath the retinal pigment epithelium in senile eyes. Br. J. Ophthalmol. 57(12), 951–965 (1973)CrossRefGoogle Scholar
  97. 97.
    L.J. Singerman, J.H. Stockfish, Natural history of subfoveal pigment epithelial detachments associated with subfoveal or unidentifiable choroidal neovascularization complicating age-related macular degeneration. Graefes Arch. Clin. Exp. Ophthalmol. 227(6), 501–507 (1989)CrossRefGoogle Scholar
  98. 98.
    C. Kunze, A.E. Elsner, E. Beausencourt, L. Moraes, M.E. Hartnett, C.L. Trempe, Spatial extent of pigment epithelial detachments in age-related macular degeneration. Ophthalmology 106(9), 1830–1840 (1999)CrossRefGoogle Scholar
  99. 99.
    C. Cedrone, C. Nucci, G. Scuderi, F. Ricci, A. Cerulli, F. Culasso, Prevalence of blindness and low vision in an Italian population: a comparison with other European studies. Eye (Lond). 20(6), 661–667 (2006)Google Scholar
  100. 100.
    H.A. Quigley, A.T. Broman, The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90(3), 262–267 (2006)CrossRefGoogle Scholar
  101. 101.
    H.A. Quigley, R.W. Nickells, L.A. Kerrigan, M.E. Pease, D.J. Thibault, D.J. Zack, Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest. Ophthalmol. Vis. Sci. 36(5), 774–786 (1995)Google Scholar
  102. 102.
    L.A. Kerrigan, D.J. Zack, H.A. Quigley, S.D. Smith, M.E. Pease, TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch. Ophthalmol. 115(8), 1031–1035 (1997)CrossRefGoogle Scholar
  103. 103.
    H.A. Quigley, G.R. Dunkelberger, W.R. Green, Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology 95(3), 357–363 (1988)Google Scholar
  104. 104.
    A. Heijl, M.C. Leske, B. Bengtsson, L. Hyman, M. Hussein, Early Manifest Glaucoma Trial Group, Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch. Ophthalmol. 120(10), 1268–1279 (2002)Google Scholar
  105. 105.
    A. Tuulonen, P.J. Airaksinen, Initial glaucomatous optic disk and retinal nerve fiber layer abnormalities and their progression. Am. J. Ophthalmol. 111(4), 485–490 (1991)Google Scholar
  106. 106.
    H.A. Quigley, Early detection of glaucomatous damage. II. Changes in the appearance of the optic disk. Surv. Ophthalmol. 30(2), 111, 117–126 (1985)Google Scholar
  107. 107.
    W.F. Hoyt, L. Frisén, N.M. Newman, Fundoscopy of nerve fiber layer defects in glaucoma. Invest. Ophthalmol. 12(11), 814–829 (1973)Google Scholar
  108. 108.
    R.S. Harwerth, L. Carter-Dawson, F. Shen, E.L. Smith 3rd, M.L. Crawford, Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 40(10), 2242–2250 (1999)Google Scholar
  109. 109.
    L.A. Kerrigan-Baumrind, H.A. Quigley, M.E. Pease, D.F. Kerrigan, R.S. Mitchell, Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest. Ophthalmol. Vis. Sci. 41(3), 741–748 (2000)Google Scholar
  110. 110.
    R.N. Weinreb, L.M. Zangwill, S. Jain, L.M. Becerra, K. Dirkes, J.R. Piltz-Seymour, G.A. Cioffi, G.L. Trick, A.L. Coleman, J.D. Brandt, J.M. Liebmann, M.O. Gordon, M.A. Kass, OHTS CSLO Ancillary Study Group, Predicting the onset of glaucoma: the confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study. Ophthalmology 117(9), 1674–1683 (2010)Google Scholar
  111. 111.
    F.A. Medeiros, G. Vizzeri, L.M. Zangwill, L.M. Alencar, P.A. Sample, R.N. Weinreb, Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease. Ophthalmology 115(8), 1340–1346 (2008)CrossRefGoogle Scholar
  112. 112.
    M. Lalezary, F.A. Medeiros, R.N. Weinreb, C. Bowd, P.A. Sample, I.M. Tavares, A. Tafreshi, L.M. Zangwill, Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. Am. J. Ophthalmol. 142(4), 576–582 (2006)CrossRefGoogle Scholar
  113. 113.
    Q. Zhou, J. Reed, R.W. Betts, P.K. Trost, P.W. Lo, C. Wallace, R.H. Bienias, G. Li, R. Winnick, W.A. Papworth, M. Sinai, Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with custom corneal compensation. Proc. SPIE 4951, 32 (2003)ADSCrossRefGoogle Scholar
  114. 114.
    R.P. Hemenger, Birefringence of a medium of tenuous parallel cylinders. Appl. Opt. 28(18), 4030–4034 (1989)ADSCrossRefGoogle Scholar
  115. 115.
    Q. Zhou, R.W. Knighton, Light scattering and form birefringence of parallel cylindrical arrays that represent cellular organelles of the retinal nerve fiber layer. Appl. Opt 36(10), 2273–2285 (1997)ADSCrossRefGoogle Scholar
  116. 116.
    X.R. Huang, R.W. Knighton, Microtubules contribute to the birefringence of the retinal nerve fiber layer. Invest. Ophthalmol. Vis. Sci. 46(12), 4588–4593 (2005)CrossRefGoogle Scholar
  117. 117.
    X.R. Huang, H. Bagga, D.S. Greenfield, R.W. Knighton, Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects. Invest. Ophthalmol. Vis. Sci. 45(9), 3073–3080 (2004)CrossRefGoogle Scholar
  118. 118.
    E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, C.K. Hitzenberger, Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison. J. Biophotonics. 1(2), 129–139 (2008)CrossRefGoogle Scholar
  119. 119.
    H.G. Rylander 3rd, N.J. Kemp, J. Park, H.N. Zaatari, T.E. Milner, Birefringence of the primate retinal nerve fiber layer. Exp. Eye Res. 81(1), 81–89 (2005)CrossRefGoogle Scholar
  120. 120.
    T.E. Ogden, Nerve fiber layer of the primate retina: thickness and glial content. Vision Res. 23(6), 581–587 (1983)CrossRefGoogle Scholar
  121. 121.
    G.M. Pocock, R.G. Aranibar, N.J. Kemp, C.S. Specht, M.K. Markey, H.G. Rylander 3rd, The relationship between retinal ganglion cell axon constituents and retinal nerve fiber layer birefringence in the primate. Invest. Ophthalmol. Vis. Sci. 50(11), 5238–5246 (2009)CrossRefGoogle Scholar
  122. 122.
    E. Götzinger, M. Pircher, B. Baumann, H. Resch, C. Vass, C.K. Hitzenberger, Comparison of retinal nerve fiber layer birefringence and thickness of healthy and glaucoma suspect eyes measured with polarization sensitive spectral domain OCT. ARVO Poster #5823/A161-2009Google Scholar
  123. 123.
    J.C. Vickers, R.A. Schumer, S.M. Podos, R.F. Wang, B.M. Riederer, J.H. Morrison, Differential vulnerability of neurochemically identified subpopulations of retinal neurons in a monkey model of glaucoma. Brain Res. 680(1–2), 23–35 (1995)CrossRefGoogle Scholar
  124. 124.
    A.J. Weber, P.L. Kaufman, W.C. Hubbard, Morphology of single ganglion cells in the glaucomatous primate retina. Invest. Ophthalmol. Vis. Sci. 39(12), 2304–2320 (1998)Google Scholar
  125. 125.
    T. Shou, J. Liu, W. Wang, Y. Zhou, K. Zhao, Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest. Ophthalmol. Vis. Sci. 44(7), 3005–3010 (2003)CrossRefGoogle Scholar
  126. 126.
    C. Balaratnasingam, W.H. Morgan, L. Bass, S.J. Cringle, D.Y. Yu, Time-dependent effects of elevated intraocular pressure on optic nerve head axonal transport and cytoskeleton proteins. Invest. Ophthalmol. Vis. Sci. 49(3), 986–999 (2008)CrossRefGoogle Scholar
  127. 127.
    J.H. Kempen, B.J. O’Colmain, M.C. Leske, S.M. Haffner, R. Klein, S.E. Moss, H.R. Taylor, R.F. Hamman, Eye Diseases Prevalence Research Group, The prevalence of diabetic retinopathy among adults in the United States. Arch. Ophthalmol. 122(4), 552–563 (2004)Google Scholar
  128. 128.
    R. Klein, B.E. Klein, S.E. Moss, K.J. Cruickshanks, The Wisconsin Epidemiologic Study of Diabetic Retinopathy. XV. The long-term incidence of macular edema. Ophthalmology 102(1), 7–16 (1995)Google Scholar
  129. 129.
    Group TDCaCTR. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N. Engl. J. Med. 329(14), 977–986 (1993)Google Scholar
  130. 130.
    P. Reichard, B.Y. Nilsson, U. Rosenqvist, The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N. Engl. J. Med. 329(5), 304–309 (1993)CrossRefGoogle Scholar
  131. 131.
    UK Prospective Diabetes Study Group, Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. Br. Med. J. 317(7160), 703–713 (1998)CrossRefGoogle Scholar
  132. 132.
    ACCORD Study Group, ACCORD Eye Study Group, E.Y. Chew, W.T. Ambrosius, M.D. Davis, R.P. Danis , S. Gangaputra, C.M. Greven, L. Hubbard, B.A. Esser, J.F. Lovato, L.H. Perdue, D.C. Goff Jr, W.C. Cushman, H.N. Ginsberg, M.B. Elam, S. Genuth, H.C. Gerstein, U. Schubart, L.J. Fine, Effects of medical therapies on retinopathy progression in type 2 diabetes. N. Engl. J. Med. 363(3), 233–244 (2010)Google Scholar
  133. 133.
    R. Klein, B.E. Klein, S.E. Moss, M.D. Davis, D.L. DeMets, The Wisconsin epidemiologic study of diabetic retinopathy: X. Four-year incidence and progression of diabetic retinopathy when age at diagnosis is 30 years or more. Arch. Ophthalmol. 107(2), 244–249 (1989)Google Scholar
  134. 134.
    Early Treatment Diabetic Retinopathy Study Research Group, Photocoagulation for diabetic macular edema. ETDRS report number 1. Arch. Ophthalmol. 103(12), 1796–1806 (1985)Google Scholar
  135. 135.
    Early Treatment Diabetic Retinopathy Study Research Group, Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. ETDRS Report No 2. Ophthalmology 94(7), 761–774 (1987)Google Scholar
  136. 136.
    G.G. Deák, M. Bolz, K. Kriechbaum, S. Prager, G. Mylonas, C. Scholda, U. Schmidt-Erfurth, Diabetic Retinopathy Research Group Vienna, Effect of retinal photocoagulation on intraretinal lipid exudates in diabetic macular edema documented by optical coherence tomography. Ophthalmology 117(4), 773–779 (2010)Google Scholar
  137. 137.
    M. Bolz, U. Schmidt-Erfurth, G. Deak, G. Mylonas, K. Kriechbaum, C. Scholda, Diabetic Retinopathy Research Group Vienna, Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology 116(5), 914–920 (2009)Google Scholar
  138. 138.
    W. Soliman, B. Sander, T.M. Jørgensen, Enhanced optical coherence patterns of diabetic macular oedema and their correlation with the pathophysiology. Acta Ophthalmol. Scand. 85(6), 613–617 (2007)CrossRefGoogle Scholar
  139. 139.
    M. Bolz, B. Pemp, J. Lammer, B. Baumann, B. Wetzel, M. Pircher, C.K. Hitzenbergerv, U. Schmidt-Erfurth, Diabetic Retinopathy Research Group Vienna, The influence of anti-VEGF agents on intra-retinal lipo-protein exudates assessed by spectral domain and polarisations sensitive optical coherence tomography. ARVO Poster #5060/D991-2010Google Scholar
  140. 140.
    J. Lammer, M. Bolz, B. Baumann, M. Pircher, B. Wetzel, C.K. Hitzenberger, U. Schmidt-Erfurth, Diabetic Retinopathy Research Group (DRRG) Vienna, Automated detection and quantification of hard exudates in diabetic macular edema using polarization sensitive optical coherence tomography. ARVO Poster #4660/D935-2010Google Scholar
  141. 141.
    Diabetic Retinopathy Clinical Research Network, M.J. Elman, L.P. Aiello, R.W. Beck, N.M. Bressler, S.B. Bressler, A.R. Edwards, F.L. Ferris 3rd, S.M. Friedman, A.R. Glassman, K.M. Miller, I.U. Scott, C.R. Stockdale, J.K. Sun, Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 117(6), 1064.e35–1077.e35 (2010)Google Scholar
  142. 142.
    E.Y. Chew, M.L. Klein, F.L. Ferris 3rd, N.A. Remaley, R.P. Murphy, K. Chantry, B.J. Hoogwerf, D. Miller, Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy: early treatment diabetic retinopathy study (ETDRS) report 22. Arch. Ophthalmol. 114(9), 1079–1084 (1996)CrossRefGoogle Scholar
  143. 143.
    D.J. Wilson, D. Finkelstein, H.A. Quigley, W.R. Green, Macular grid photocoagulation: an experimental study on the primate retina. Arch. Ophthalmol. 106(1), 100–105 (1988)CrossRefGoogle Scholar
  144. 144.
    A. Arnarsson, E. Stefánsson, Laser treatment and the mechanism of edema reduction in branch retinal vein occlusion. Invest. Ophthalmol. Vis. Sci. 41(3), 877–879 (2000)Google Scholar
  145. 145.
    Writing Committee for the Diabetic Retinopathy Clinical Research Network, D.S. Fong, S.F. Strauber, L.P. Aiello, R.W. Beck, D.G. Callanan, R.P. Danis, M.D. Davis, S.S. Feman, F. Ferris, S.M. Friedman, C.A. Garcia, A.R. Glassman, D.P. Han, D. Le, C. Kollman, A.K. Lauer, F.M. Recchia, S.D. Solomon, Comparison of the modified early treatment diabetic retinopathy study and mild macular grid laser photocoagulation strategies for diabetic macular edema. Arch. Ophthalmol. 125(4), 469–480 (2007)Google Scholar
  146. 146.
    M. Bolz, K. Kriechbaum, C. Simader, G. Deak, J. Lammer, C. Treu, C. Scholda, C. Prünte, U. Schmidt-Erfurth, Diabetic Retinopathy Research Group Vienna, In vivo retinal morphology after grid laser treatment in diabetic macular edema. Ophthalmology 117(3), 538–544 (2010)Google Scholar
  147. 147.
    J. Lammer, M. Bolz, G. Deak, S.G. Prager, B. Baumann, M. Pircher, E. Götzinger, C.K. Hitzenberger, U. Schmidt-Erfurth, Diabetic Retinopathy Research Group Vienna, In vivo effects of laser treatment on retinal morphology observed by polarization sensitive OCT. ARVO abstract #2080-2009Google Scholar
  148. 148.
    K. Kriechbaum, M. Bolz, G.G. Deak, S. Prager, C. Scholda, U. Schmidt-Erfurth, High-resolution imaging of the human retina in vivo after scatter photocoagulation treatment using a semiautomated laser system. Ophthalmology 117(3), 545–551 (2010)CrossRefGoogle Scholar
  149. 149.
    Y.M. Paulus, A. Jain, R.F. Gariano, B.V. Stanzel, M. Marmor, M.S. Blumenkranz, D. Palanker, Healing of retinal photocoagulation lesions. Invest. Ophthalmol. Vis. Sci. 49(12), 5540–5545 (2008)CrossRefGoogle Scholar
  150. 150.
    T. Li, Q.L. Luo, H.Y. Wu, Histopathologic an immunohistochemical studies on retina after laser photocoagulation (abstract). Sichuan Da Xue Xue Bao Yi Xue Ban 35(4), 512–515 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • U. Schmidt-Erfurth
    • 1
  • F. Schlanitz
    • 1
  • M. Bolz
    • 1
  • C. Vass
    • 1
  • J. Lammer
    • 1
  • C. Schütze
    • 1
  • M. Pircher
    • 2
  • E. Götzinger
    • 2
  • B. Baumann
    • 2
  • C. K. Hitzenberger
    • 2
  1. 1.Department of Ophthalmology and OptometryMedical University ViennaViennaAustria
  2. 2.Center for Medical Physics and Biomedical EngineeringMedical University ViennaViennaAustria

Personalised recommendations