Optical Coherence Tomography: A Concept Review

  • Pedro Serranho
  • António Miguel Morgado
  • Rui Bernardes
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Optical coherence tomography (OCT) is an imaging modality broadly used in biological tissue imaging. In this chapter, we review the history of OCT and its development throughout the last years. We will focus on the physical concept of OCT imaging of the eye fundus, considering several settings currently used. We also list some research directions of recent and ongoing work concerned with the future developments of the technique and its application.


Optical Coherence Tomography Optical Coherence Tomography Image Axial Resolution Human Retina Backscatter Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.G. Fujimoto, Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 21(11), 1361–1367 (2003)CrossRefGoogle Scholar
  2. 2.
    J.G. Fujimoto, Optical coherence tomography: principles and applications. Rev. Laser Eng. 31, 635–642 (2003)CrossRefGoogle Scholar
  3. 3.
    G.H. Mundt Jr., W.F. Hughes Jr., Ultrasonics in ocular diagnosis. Am. J. Ophthalmol. 41(3), 488–498 (1956)Google Scholar
  4. 4.
    J.C. Bamber, M. Tristam, Diagnostic ultrasound, in The Physics of Medical Imaging, ed. by S. Webb (Adam Hilger, Bristol, 1988), pp. 319–388Google Scholar
  5. 5.
    W. Drexler, U. Morgner, F.X. Kärtner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, J.G. Fujimoto, In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 24(17), 1221–1223 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    W. Drexler, U. Morgner, R.K. Ghanta, F.X. Kärtner, J.S. Schuman, J.G. Fujimoto, Ultrahigh-resolution ophthalmic optical coherence tomography. Nat. Med. 7(4), 502–507 (2001)CrossRefGoogle Scholar
  7. 7.
    U. Schmidt-Erfurth, R.A. Leitgeb, S. Michels, B. Považay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A.F. Fercher, W. Drexler, Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005)CrossRefGoogle Scholar
  8. 8.
    V.J. Srinivasan, Y. Chen, J.S. Duker, J.G. Fujimoto, In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT. Opt. Express 17(5), 3861–3877 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    N. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, C. Bruni, Statistics of optical coherence tomography data from human retina. IEEE Trans. Med. Imaging 29(6), 1224–1237 (2010)CrossRefGoogle Scholar
  10. 10.
    R. Bernardes, T. Santos, P. Serranho, C. Lobo, J. Cunha-Vaz, On invasive evaluation of retinal leakage using optical coherence tomography. Ophthalmologica 226(2), 29–36 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, W. Drexler, In vivo retinal optical coherence tomography at 1040 nm—enhanced penetration into the choroid. Opt. Express 13(9), 3252–3258 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, Y. Yasuno, Simultaneous high-resolution retinal imaging and high-penetration, choroidal imaging by one-micrometer adaptive optics optical coherence tomography. Opt. Express 18(8), 8515–8527 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    J. Schmitt, Optical coherence tomography (OCT): a review. IEEE J. Sel. Top. Quant. Electron. 5(4), 1205–1215 (1999)CrossRefGoogle Scholar
  14. 14.
    W. Drexler, Ultrahigh-resolution optical coherence tomography. J. Biomed. Opt. 9(1), 47–74 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    A.G. Podoleanu, Optical coherence tomography. Br. J. Radiol. 78(935), 976–988 (2005)Google Scholar
  16. 16.
    P.H. Tomlins, R.K. Wang, Theory, developments and applications of optical coherence tomography. J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    M.L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L.S. Folio, J.S. Schuman. Optical coherence tomography: history, current status, and laboratory work. Invest. Ophthalmol. Vis. Sci. 52(5), 2425–2436 (2011)CrossRefGoogle Scholar
  18. 18.
    A.F. Fercher, W. Drexler, C.K. Hitzenberger, T. Lasser. Optical coherence tomography—principles and applications. Rep. Prog. Phys. 66, 239–303 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    M. Brezinski, J. Fujimoto, Optical coherence tomography: high-resolution imaging in nontransparent tissue. IEEE J. Sel. Top. Quant, Electron. 5(4), 1185–1192 (1999)Google Scholar
  20. 20.
    A. Zysk, F. Nguyen, A. Oldenburg, D. Marks, S. Boppart, Optical coherence tomography: a review of clinical development from bench to bedside. J. Biomed. Opt. 12(5), 051403 (2007)Google Scholar
  21. 21.
    M. Wurm, K. Wiesauer, K. Nagel, M. Pircher, E. Götzinger, C.K. Hitzenberger, D. Stifter, in Spectral Domain Optical Coherence Tomography: A Novel And Fast Tool For NDT. IVth NDT in Progress, Prague, Czech Republic, 5–7 November 2007Google Scholar
  22. 22.
    D. Stifter, K. Wiesauer, M. Wurm, E. Leiss, M. PIircher, E. Götzinger, B. Baumann, C.K. Hitzenberger, in Advanced Optical Coherence Tomography Techniques: Novel and Fast Imaging Tools for Non-destructive Testing. 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28 October 2008Google Scholar
  23. 23.
    Z. Yaqoob, J. Wu, C. Yang, Spectral domain optical coherence tomography: a better OCT imaging strategy. BioTechniques 39(6), 6–13 (2005)CrossRefGoogle Scholar
  24. 24.
    S. Wolf, U. Wolf-Schnurrbusch, Spectral-domain optical coherence tomography use in macular diseases: a review. Ophthalmologica 224(6), 333–340 (2010)CrossRefGoogle Scholar
  25. 25.
    P.A. Flournoy, R.W. McClure, G. Wyntjes, White-light interferometric thickness gauge. Appl. Opt. 11(9), 1907–1915 (1972)Google Scholar
  26. 26.
    A.F. Fercher, K. Mengedoht, W. Werner, Eyelength measurement by interferometry with partially coherent light. Opt. Lett. 13(3), 186–188 (1988)ADSCrossRefGoogle Scholar
  27. 27.
    F. Fercher, Ophthalmic interferometry, in Proceedings of the International Conference on Optics in Life Sciences. ed. by G. von Bally, S. Khanna, Garmisch-Partenkirchen, Germany, 12–16 August 1990, pp. 221–228, (ISBN 0–444–89860–3)Google Scholar
  28. 28.
    C.K. Hitzenberger, Optical measurement of the axial eye length by laser Doppler interferometry. Invest. Ophthalmol. Vis. Sci. 32(3), 616–624 (1991)Google Scholar
  29. 29.
    D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, Optical coherence tomography. Science 254(5035), 1178–1181 (1991)Google Scholar
  30. 30.
    A.F. Fercher, C.K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, In vivo optical coherence tomography. Am. J. Ophthalmol. 116(1), 113–114 (1993)Google Scholar
  31. 31.
    E.A. Swanson, J.A. Izatt, M.R. Hee, D. Huang, C.P. Lin, J.S. Schuman, C.A. Puliafito, J.G. Fujimoto, In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18(21), 1864–1866 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    J.M. Schmitt, A. Knüttel, M. Yadlowsky, M.A. Eckhaus, Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering. Phys. Med. Biol. 39(10), 1705–1720 (1994)CrossRefGoogle Scholar
  33. 33.
    J.A. Izatt, M.R. Hee, E.A. Swanson, C.P. Lin, D. Huang, J.S. Schuman, C.A. Puliafito, J.G. Fujimoto, Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch. Ophthalmol. 112(12), 1584–1589 (1994)CrossRefGoogle Scholar
  34. 34.
    M.R. Hee, J.A. Izatt, E.A. Swanson, D. Huang, J.S. Schuman, C.P. Lin, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography of the human retina. Arch. Ophthalmol. 113(3), 325–332 (1995)CrossRefGoogle Scholar
  35. 35.
    A. Podoleanu, J. Rogers, D. Jackson, S. Dunne, Three dimensional OCT images from retina and skin. Opt. Express 7(9), 292–298 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    C. Hitzenberger, P. Trost, P.W. Lo, Q. Zhou, Three-dimensional imaging of the human retina by high-speed optical coherence tomography. Opt. Express 11(21), 2753–2761 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117, 43–48 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    S.R. Chinn, E.A. Swanson, J.G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source. Opt. Lett. 22(5), 340–342 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    F. Lexer, C.K. Hitzenberger, A.F. Fercher, M. Kulhavy, Wavelength-tuning interferometry of intraocular distances. Appl. Opt. 36(25), 6548–6553 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    B. Golubovic, B.E. Bouma, G.J. Tearney, J.G. Fujimoto, Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser. Opt. Lett. 22(22), 1704–1706 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    G. Häusler, M.W. Lindner, “Coherence radar” and “spectral radar”—new tools for dermatological diagnosis. J. Biomed. Opt. 3(1), 21–31 (1998)CrossRefGoogle Scholar
  42. 42.
    M. Choma, M. Sarunic, C. Yang, J. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11(18), 2183–2189 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28(21), 2067–2069 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    R. Leitgeb, C. Hitzenberger, A. Fercher, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 11(8), 889–894 (2003)Google Scholar
  45. 45.
    C.K. Leung, C.Y. Cheung, R.N. Weinreb, G. Lee, D. Lin, C.P. Pan, D.S. Lam, Comparison of macular thickness measurements between time domain and spectral domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 49(11), 4893–4897 (2008)CrossRefGoogle Scholar
  46. 46.
    F. Forooghian, C. Cukras, C.B. Meyerle, E.Y. Chew, W.T. Wong, Evaluation of time domain and spectral domain optical coherence tomography in the measurement of diabetic macular edema. Invest. Ophthalmol. Vis. Sci. 49(10), 4290–4296 (2008)CrossRefGoogle Scholar
  47. 47.
    M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A.F. Fercher, In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7(3), 457–463 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    B.E. Bouma, G.J. Tearnley (eds.), Handbook of Optical Coherence Tomography (Marcel Dekker, New York, 2002)Google Scholar
  49. 49.
    Z. Hu, Y. Pan, A.M. Rollins, Analytical model of spectrometer-based two-beam spectral interferometry. Appl. Opt. 46(35), 8499–8505 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    M.A. Choma, K. Hsu, J.A. Izatt, Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. J. Biomed. Opt. 10(4), 44009 (2005)Google Scholar
  51. 51.
    B. Potsaid, B. Baumann, D. Huang, S. Barry, A.E. Cable, J.S. Schuman, J.S. Duker, J.G. Fujimoto, Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt. Express 18(19), 20029–20048 (2010)CrossRefGoogle Scholar
  52. 52.
    B. Baumann, B. Potsaid, M.F. Kraus, J.J. Liu, D. Huang, J. Hornegger, A.E. Cable, J.S. Duker, J.G. Fujimoto, Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT. Biomed. Opt. Express 2(6), 1539–1552 (2011)CrossRefGoogle Scholar
  53. 53.
    A.S. Neubauer, L. Reznicek, T. Klein, W. Wieser, C.M. Eigenwillig, B. Biedermann, A. Kampik, R. Huber, Ultra-High-Speed Ultrawide Field Swept Source OCT Reconstructed Fundus Image Quality (ARVO, Fort Lauderdale, USA, 1–5 May, 2011) (Program/Poster # 1327/A264)Google Scholar
  54. 54.
    A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, C. Boccara, Ultrahigh-resolution full-field optical coherence tomography. Appl. Opt. 43(14), 2874–2883 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    A. Dubois, G. Moneron, K. Grieve, A.C. Boccara, Three-dimensional cellular-level imaging using full-field optical coherence tomography. Phys. Med. Biol. 49(7), 1227–1234 (2004)CrossRefGoogle Scholar
  56. 56.
    A. Dubois, J. Moreau, C. Boccara, Spectroscopic ultrahigh-resolution full-field optical coherence microscopy. Opt. Express 16(21), 17082–17091 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044–2046 (1987)ADSCrossRefGoogle Scholar
  58. 58.
    A.F. Abouraddy, M.B. Nasr, B.E.A. Saleh, A.V. Sergienko, M.C. Teich, Quantum-optical coherence tomography with dispersion cancellation. Phys. Rev. A 65(5), 053817 (2002)Google Scholar
  59. 59.
    M.B. Nasr, B.E. Saleh, A.V. Sergienko, M.C. Teich, Demonstration of dispersion-canceled quantum-optical coherence tomography. Phys. Rev. Lett. 91(8), 083601 (2003)Google Scholar
  60. 60.
    A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, T. Lasser, Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography. Opt. Express 9(12), 610–615 (2001)ADSCrossRefGoogle Scholar
  61. 61.
    E.D.J. Smith, A.V. Zvyagin, D.D. Sampson, Real-time dispersion compensation in scanning interferometry. Opt. Lett. 27(22), 1998–2000 (2002)ADSCrossRefGoogle Scholar
  62. 62.
    S. Carrasco, J.P. Torres, L. Torner, A. Sergienko, B.E. Saleh, M.C. Teich, Enhancing the axial resolution of quantum optical coherence tomography by chirped quasi-phase matching. Opt. Lett. 29(20), 2429–2431 (2004)ADSCrossRefGoogle Scholar
  63. 63.
    M. Nasr, B. Saleh, A. Sergienko, M. Teich, Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography. Opt. Express 12(7), 1353–1362 (2004)ADSCrossRefGoogle Scholar
  64. 64.
    M.B. Nasr, D.P. Goode, N. Nguyen, G. Rong, L. Yang, B.M. Reinhard, B.E. Saleh, M.C. Teich, Quantum optical coherence tomography of a biological sample. Opt. Commun. 282, 1154–1159 (2009)ADSCrossRefGoogle Scholar
  65. 65.
    M.C. Teich, B.E.A. Saleh, F.N.C. Wong, J.H. Shapiro, Quantum optical coherence tomography: a review. Quant. Inf. Process (2012, in press), http://people.bu.edu/teich/abstracts/quantum-opt-archive.html
  66. 66.
    M.C. Booth, G. Di Giuseppe, B.E.A. Saleh, A.V. Sergienko, M.C. Teich, Polarization-sensitive quantum-optical coherence tomography. Phys. Rev. A 69(4), 043815 (2004)Google Scholar
  67. 67.
    M.C. Booth, B.E. Saleh, M.C. Teich, Polarization-sensitive quantum optical coherence tomography: experiment. Opt. Commun. 284, 2542–2549 (2011)ADSCrossRefGoogle Scholar
  68. 68.
    A. Bilenca, T. Lasser, B. Bouma, R.A. Leitgeb, G.J. Tearney, Information limits of optical coherence imaging through scattering media. Photon. J. IEEE 1(2), 119–127 (2009)CrossRefGoogle Scholar
  69. 69.
    R. Bernardes, T. Santos, J. Cunha-Vaz, in Evaluation of Blood–Retinal Barrier Function from Fourier Domain High-Definition Optical Coherence Tomography, ed. by O. Dössel, W.C. Schlegel. World Congress on Medical Physics and Biomedical Engineering, vol. 25/11, Munich, Germany, 7–12 September 2009, pp. 316–319 (Springer, Heidelberg, 2009)Google Scholar
  70. 70.
    R. Bernardes, Optical coherence tomography: health information embedded on OCT signal statistics, in Proceedings of the 33rd Annual International Conference of the IEEE EMBS, Boston, USA, 30 August–3 September 2011, pp. 6131–6133Google Scholar
  71. 71.
    T. Klein, L. Reznicek, W. Wieser, C.M. Eigenwillig, B. Biedermann, A. Kampik, R. Huber, A.S. Neubauer, Extraction of Arbitrary OCT Scan Paths from 3D Ultra-High-Speed Ultra Wide-Field Swept Source OCT (ARVO, Fort Lauderdale, USA, 1–5 May 2011) (Program/Poster # 1328/A265)Google Scholar
  72. 72.
    V.J. Srinivasan, D.C. Adler, Y. Chen, E. Gorczynska, R. Huber, J.S. Duker, J.S. Schuman, J.G. Fujimoto, Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest. Ophthalmol. Vis. Sci. 49(11), 5103–5110 (2008)CrossRefGoogle Scholar
  73. 73.
    Y. Ikuno, I. Maruko, Y. Yasuno, M. Miura, T. Sekiryu, K. Nishida, T. Iida, Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 52(8), 5536–5540 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pedro Serranho
    • 1
    • 2
  • António Miguel Morgado
    • 3
    • 4
  • Rui Bernardes
    • 3
    • 5
  1. 1.Department of Science and TechnologyOpen UniversityPorto Salvo, OeirasPortugal
  2. 2.IBILI-Institute for Biomedical Research in Light and Image, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  3. 3.IBILI-Institute for Biomedical Research in Light and Image, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  4. 4.Department of PhysicsUniversity of CoimbraCoimbraPortugal
  5. 5.AIBILI-Association for Innovation and Biomedical Research on Light and ImageCoimbraPortugal

Personalised recommendations