• Suk Ho Byeon
  • Min Kim
  • Oh Woong Kwon
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


“Ischemia” implies a tissue damage derived from perfusion insufficiency, not just an inadequate blood supply. Mild thickening and increased reflectivity of inner retina and prominent inner part of synaptic portion of outer plexiform layer are “acute retinal ischemic changes” visible on OCT. Over time, retina becomes thinner, especially in the inner portion. Choroidal perfusion supplies the outer portion of retina; thus, choroidal ischemia causes predominant change in the corresponding tissue.


Optical Coherence Tomography Fluorescein Angiography Choroidal Thickness Ganglion Cell Layer Central Retinal Vein Occlusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. Bek, Inner retinal ischaemia: current understanding and needs for further investigations. Acta Ophthalmol. 87(4):362–367 (2009)CrossRefGoogle Scholar
  2. 2.
    S. Hayreh, Prevalent misconceptions about acute retinal vascular occlusive disorders. Prog. Retin. Eye Res. 24(4), 493–519 (2005)CrossRefGoogle Scholar
  3. 3.
    M. Yanoff, B.S. Fine, Ocular Pathology: A Text and Atlas, 3rd ed. (Lippincott, Philadelphia, 1988), pp. 383–394Google Scholar
  4. 4.
    N.N. Osborne, R.J. Casson, J.P.M. Wood, G. Childlow, M. Graham, J. Melena, Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog. Retin. Eye Res. 23(1), 91–147 (2004)CrossRefGoogle Scholar
  5. 5.
    R.W. Green, Retinal ischemia; vascular and circulatory conditions and diseases, in Ophthalmic Pathology: An Atlas and Textbook, ed by W.H. Spencer (Saunders, Philadelphia, 1985), p. 655Google Scholar
  6. 6.
    M.J. Hogan, J.A. Alvarado, J.E. Weddell, Histology of the Human Eye; An Atlas and Textbook (Saunders, Philadelphia, 1971)Google Scholar
  7. 7.
    J. Justice Jr., R.P. Lehmann, Cilioretinal arteries. A study based on review of stereo fundus photographs and fluorescein angiographic findings. Arch. Ophthalmol. 94(8), 1355–1358 (1976)Google Scholar
  8. 8.
    M.J. Hogan, J.A. Alvarado, J.E. Weddell, Histology of the Human Eye. 2nd ed. (Saunders, Philadelphia, 1971), pp. 448–471Google Scholar
  9. 9.
    J.M. Provis, Development of the primate retinal vasculature. Prog. Retin. Eye Res. 20(6), 799–821 (2001)CrossRefGoogle Scholar
  10. 10.
    J.M. Provis, A.E. Hendrickson, The foveal avascular region of developing human retina. Arch. Ophthalmol. 126(4), 507–511 (2008)CrossRefGoogle Scholar
  11. 11.
    R.S. Weinhaus, J.M. Burke, F.C. Delori, D.M. Snodderly, Comparison of fluorescein angiography with microvascular anatomy of macaque retinas. Exp. Eye Res. 61(1), 1–16 (1995)CrossRefGoogle Scholar
  12. 12.
    P.L. Penfold, M.C. Madigan, J.M. Provis, Antibodies to human leucocyte antigens indicate subpopulations of microglia in human retina. Vis. Neurosci. 7(4), 383–388 (1991)CrossRefGoogle Scholar
  13. 13.
    D.Y. Yu, S.J. Cringle, Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog. Retin. Eye Res. 20(2), 175–208 (2001)CrossRefGoogle Scholar
  14. 14.
    S.H. Byeon, Y.K. Chu, H. Lee, S.Y. Lee, O.W. Kwon, Foveal ganglion cell layer damage in ischemic diabetic maculopathy: correlation of optical coherence tomographic and anatomic changes. Ophthalmology 116(10), 1949–1959.e8 (2009)Google Scholar
  15. 15.
    B. Sander, M. Larsen, C. Engler, H. Lund-Andersen, Absence of foveal avascular zone demonstrated by laser scanning fluorescein angiography. Acta Ophthalmol. 72(5), 550–552 (1994)Google Scholar
  16. 16.
    D.M. Foreman, S. Bagley, J. Moore, G.W. Ireland, D. McLeod, M.E. Boulton, Three dimensional analysis of the retinal vasculature using immunofluorescent staining and confocal laser scanning microscopy. Br. J. Ophthalmol. 80(3), 246–251 (1996)CrossRefGoogle Scholar
  17. 17.
    S. Duke-Elder, System of Ophthalmology, vol. 2, The Anatomy of the Visual System (Kimpton, London, 1961)Google Scholar
  18. 18.
    S.S. Hayreh, T.A. Weingeist, Experimental occlusion of the central artery of the retina. I. Ophthalmoscopic and fluorescein fundus angiographic studies. Br. J. Ophthalmol. 64(12), 896–912 (1980)Google Scholar
  19. 19.
    N.J. David, E.W.D. Noron, J.D. Gass, J. Beauchamp, Fluorescein angiography in central retinal artery occlusion. Arch. Ophthalmol. 77(5), 619–629 (1967)CrossRefGoogle Scholar
  20. 20.
    K.A. Kwiterovich, M.G. Maquire, R.P. Murphy, A.P. Schachat, N.M. Bressler, S.L. Fine, Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study. Ophthalmology 98(7), 1139–1142 (1991)Google Scholar
  21. 21.
    F.G. Holz, R.F. Spaide, Medical Retina: Focus on Retinal Imaging (Springer, Heidelberg, 2010)Google Scholar
  22. 22.
    D. Gold, Retinal arterial occlusion. Trans. Sect. Ophthalmol. Am. Acad. Ophthalmol. Otolaryngol. 83(3 Pt 1), OP392–OP408 (1977)Google Scholar
  23. 23.
    R.K. Murthy, S. Grover, K.V. Chalam, Sequential spectral domain OCT documentation of retinal changes after branch retinal artery occlusion. Clin. Ophthalmol. 26(4), 327–329 (2010)Google Scholar
  24. 24.
    K. Shinoda, K. Yamada, C.S. Matsumoto, K. Kimoto, K. Nakatsuka, Changes in retinal thickness are correlated with alterations of electroretinogram in eyes with central retinal artery occlusion. Graefes Arch. Clin. Exp. Ophthalmol. 246(7), 949–954 (2008)CrossRefGoogle Scholar
  25. 25.
    D. Schmidt, T. Kube, N. Feltgen, Central retinal artery occlusion: findings in optical coherence tomography and functional correlations. Eur. J. Med. Res. 11(6), 250–252 (2006)Google Scholar
  26. 26.
    M.C. Kincaid, Uveal melanoma. Cancer Control 5(4), 299–309 (1998)Google Scholar
  27. 27.
    A.J. Kroll, Experimental central retinal artery occlusion. Arch. Ophthalmol. 79(4), 453–469 (1968)CrossRefGoogle Scholar
  28. 28.
    R.L. Radius, D.R. Anderson, Morphology of axonal transport abnormalities in primate eyes. Br. J. Ophthalmol. 65(11), 767–777 (1981)CrossRefGoogle Scholar
  29. 29.
    B.E.I.I. Dahrling, The histopathology of early central retinal artery occlusion. Arch. Ophthalmol. 73(4), 506–510 (1965)CrossRefGoogle Scholar
  30. 30.
    S.S. Hayreh, M.B. Zimmerman, Fundus changes in central retinal artery occlusion. Retina 27(3), 276–289 (2007)CrossRefGoogle Scholar
  31. 31.
    M.P. Lafuente, M.P. Villegas-Pérez, I. Sellés-Navarro, S. Mayor-Torroglosa, J. Miralles de Imperial, M. Vidal-Sanz, Retinal ganglion cell death after acute retinal ischemia is an ongoing process whose severity and duration depends on the duration of the insult. Neuroscience 109(1), 157–168 (2002)CrossRefGoogle Scholar
  32. 32.
    S.M. Falkenberry, M.S. Ip, B.A. Blodi, J.B. Gunther, Optical coherence tomography findings in central retinal artery occlusion. Ophthalmic Surg. Lasers Imaging 37(6), 502–505 (2006)Google Scholar
  33. 33.
    M. Karacorlu, H. Ozdemir, S. Arf Karacorlu, Optical coherence tomography findings in branch retinal artery occlusion. Eur. J. Ophthalmol. 16(2), 352–353 (2006)Google Scholar
  34. 34.
    W. Cella, M. Avila, Optical coherence tomography as a means of evaluating acute ischaemic retinopathy in branch retinal artery occlusion. Acta Ophthalmol. Scand. 85(7), 799–801 (2007)CrossRefGoogle Scholar
  35. 35.
    K. Arashvand, Images in clinical medicine. Central retinal artery occlusion. N Engl J Med. 356(8), 841 (2007)Google Scholar
  36. 36.
    S.G. Schwartz, M. Hickey, C.A. Puliafito, Bilateral CRAO and CRVO from thrombotic thrombocytopenic purpura: OCT findings and treatment with triamcinolone acetonide and bevacizumab. Ophthalmic Surg. Lasers Imaging 37(5), 420–422 (2006)Google Scholar
  37. 37.
    T. Bek, T. Ledet, Vascular occlusion in diabetic retinopathy. A qualitative and quantitative histopathological study. Acta Ophthalmol. Scand. 74(1), 36–40 (1996)Google Scholar
  38. 38.
    N. Unoki, K. Nishijima, A. Sakamoto, M. Kita, D. Watanabe, M. Hangai, T. Kimura, N. Kawagoe, M. Ohta, N. Yoshimura, Retinal sensitivity loss and structural disturbance in areas of capillary nonperfusion of eyes with diabetic retinopathy. Am. J. Ophthalmol. 144(5), 755–760 (2007)CrossRefGoogle Scholar
  39. 39.
    D.M. Kozart, Anatomic correlates of the retina, in Duane’s Clinical Ophthalmolgy, ed. by W. Tasman, E.A. Jaeger (Lippincott, Philadelphia, 1991), pp. 1–18Google Scholar
  40. 40.
    N.G. Ghazi, E.P. Tilton, B. Patel, R.M. Knape, S.A. Newman, Comparison of macular optical coherence tomography findings between postacute retinal artery occlusion and nonacute optic neuropathy. Retina 30(4), 578–585 (2010)CrossRefGoogle Scholar
  41. 41.
    H. Takahashi, H. Iijima, Sectoral thinning of the retina after branch retinal artery occlusion. Jpn. J. Ophthalmol. 53(5), 494–500 (2009)CrossRefGoogle Scholar
  42. 42.
    C.K. Leung, C.C. Tham, S. Mohammed, E.Y. Li, K.S. Leung, W.M. Chan, D.S. Lam, In vivo measurements of macular and nerve fibre layer thickness in retinal arterial occlusion. Eye (Lond.) 21(12), 1464–1468 (2007)Google Scholar
  43. 43.
    G.C. Brown, J.A. Shields, Cilioretinal arteries and retinal arterial occlusion. Arch. Ophthalmol. 97(1), 84–92 (1979)CrossRefGoogle Scholar
  44. 44.
    R.M. Burde, M.E. Smith, J.T. Black, Retinal artery occlusion in the absence of a cherry red spot. Surv. Ophthalmol. 27(3), 181–186 (1982)CrossRefGoogle Scholar
  45. 45.
    L.A. Yannuzzi, The Retinal Atlas (Elsevier, London, 2010) (Published: JUN-2010 ISBN 10: 0-7020-3320-0)Google Scholar
  46. 46.
    G.C. Brown, L.E. Magargal, R. Sergott, Acute obstruction of the retinal and choroidal circulations. Ophthalmology 93(11), 1373–1382 (1986)Google Scholar
  47. 47.
    S.S. Hayreh, J.B. Jonas, Ophthalmoscopic detectability of the parafoveal annular reflex in the evaluation of the optic nerve: an experimental study in rhesus monkeys. Ophthalmology 107(5), 1009–1014 (2000)CrossRefGoogle Scholar
  48. 48.
    S.S. Hayreh, J.B. Jonas, Optic disk and retinal nerve fiber layer damage after transient central retinal artery occlusion: an experimental study in rhesus monkeys. Am. J. Ophthalmol. 129(6), 786–795 (2000)CrossRefGoogle Scholar
  49. 49.
    G.C. Brown, J.A. Shields, Cilioretinal arteries and retinal arterial occlusion. Arch. Ophthalmol. 97(1), 84–92 (1979)CrossRefGoogle Scholar
  50. 50.
    S.S. Hayreh, L. Fraterrigo, J. Jonas, Central retinal vein occlusion associated with cilioretinal artery occlusion. Retina 28(4), 581–594 (2008)CrossRefGoogle Scholar
  51. 51.
    S.S. Hayreh, Ischemic optic neuropathy. Prog. Retin. Eye. Res. 28(1), 34–62 (2009)CrossRefGoogle Scholar
  52. 52.
    M.A. Ros, L.E. Magargal, M. Uram, Branch retinal-artery obstruction: a review of 201 eyes. Ann. Ophthalmol. 21(3), 103–107 (1989)Google Scholar
  53. 53.
    L.A. Wilson, C.P. Warlow, R.W. Russell, Cardiovascular disease in patients with retinal arterial occlusion. The Lancet. 313(8111), 292–294 (1979)CrossRefGoogle Scholar
  54. 54.
    D. Schmidt, A fluorescein angiographic study of branch retinal artery occlusion (BRAO)—the retrograde filling of occluded vessels. Eur. J. Med. Res. 4(12), 491–506 (1999)Google Scholar
  55. 55.
    M.L. Gomez, F. Mojana, D.U. Bartsch, W.R. Freeman, Imaging of long-term retinal damage after resolved cotton wool spots. Ophthalmology 116(12), 2407–2414 (2009)CrossRefGoogle Scholar
  56. 56.
    I. Kozak, D.U. Bartsch, L. Cheng, W.R. Freeman, Sign in resolved cotton wool spots using high-resolution optical coherence tomography and optical coherence tomography ophthalmoscopy. Ophthalmology 114(3), 537–543 (2007)CrossRefGoogle Scholar
  57. 57.
    G.C. Brown, J.S. Duker, R. Lehman, R.C. Eagle Jr., Combined central retinal artery-central vein obstruction. Int. Ophthalmol. 17(1), 9–17 (1993)CrossRefGoogle Scholar
  58. 58.
    T.D. Duane, Clinical Ophthalmology (Harper & Row, Philadelphia, 2002)Google Scholar
  59. 59.
    G.C. Brown, L.E. Magargal, The ocular ischemic syndrome. Clinical, fluorescein angiographic and carotid angiographic features. Int. Ophthalmol. 11(4), 239–251)(1988)Google Scholar
  60. 60.
    J.B. Mizener, P. Podhajsky, S.S. Hayreh, Ocular ischemic syndrome. Ophthalmology 104(5), 859–864 (1997)Google Scholar
  61. 61.
    J.A. Pournaras, L. Konstantinidis, T.J. Wolfensberger, Sequential central retinal artery occlusion and retinal vein stasis as a result of ocular ischemic syndrome. Klin. Monbl. Augenheilkd. 227(4), 338–339 (2010)CrossRefGoogle Scholar
  62. 62.
    G.C. Brown, Macular edema in association with severe carotid artery obstruction. Am. J. Ophthalmol. 102(4), 442–448 (1986)Google Scholar
  63. 63.
    G.D. Sturrock, H.R. Mueller, Chronic ocular ischaemia. Br. J. Ophthalmol. 68(10), 716–723 (1984)Google Scholar
  64. 64.
    Baseline and early natural history report. The Central Vein Occlusion Study. Arch. Ophthalmol. 111(8), 1087–1095 (1993)Google Scholar
  65. 65.
    D. Shroff, D.K. Mehta, R. Arora, R. Narula, D. Chauhan, Natural history of macular status in recent-onset branch retinal vein occlusion: an optical coherence tomography study. Int. Ophthalmol. 28(4), 261–268 (2008)CrossRefGoogle Scholar
  66. 66.
    The Central Vein Occlusion Study Group, Natural history and clinical management of central retinal vein occlusion. Arch. Ophthalmol. 115(4), 486–491 (1997)Google Scholar
  67. 67.
    D.J. Browning, Patchy ischemic retinal whitening in acute central retinal vein occlusion. Ophthalmology 109(11), 2154–2159 (2002)CrossRefGoogle Scholar
  68. 68.
    N. Yamaike, A. Tsujikawa, M. Ota, A. Sakamoto, Y. Kotera, M. Kita, K. Miyamoto, N. Yoshimura, M. Hangai, Three-dimensional imaging of cystoid macular edema in retinal vein occlusion. Ophthalmology 115(2), 355.e2–362.e2 (2008)Google Scholar
  69. 69.
    M. Karacorlu, H. Ozdemir, S.A. Karacorlu, Resolution of serous macular detachment after intravitreal triamcinolone acetonide treatment of patients with branch retinal vein occlusion. Retina 25(7), 856–860 (2005)CrossRefGoogle Scholar
  70. 70.
    R.F. Spaide, J.K. Lee, J.K. Klancnik Jr., N.E. Gross, Optical coherence tomography of branch retinal vein occlusion. Retina 23(3), 343–347 (2003)CrossRefGoogle Scholar
  71. 71.
    T.H. Williamson, A. O’Donnell, Intravitreal triamcinolone acetonide for cystoid macular edema in nonischemic central retinal vein occlusion. Am. J. Ophthalmol. 139(5), 860–866 (2005)CrossRefGoogle Scholar
  72. 72.
    R.A. Costa, R. Jorge, D. Calucci, L.A. Melo Jr., J.A. Cardillo, I.U. Scott, Intravitreal bevacizumab (Avastin) for central and hemicentral retinal vein occlusions: IBeVO study. Retina 27(2), 141–149 (2007)CrossRefGoogle Scholar
  73. 73.
    J. Hsu, R.S. Kaiser, A. Sivalingam, P. Abraham, M.S. Fineman, M.A. Samuel, J.F. Vander, C.D. Regillo, A.C. Ho, Intravitreal bevacizumab (Avastin) in central retinal vein occlusion. Retina 27(8), 1013–1019 (2007)CrossRefGoogle Scholar
  74. 74.
    T. Murakami, A. Tsujikawa, M. Ohta, K. Miyamoto, M. Kita, D. Watanabe, H. Takagi, N. Yoshimura, Photoreceptor status after resolved macular edema in branch retinal vein occlusion treated with tissue plasminogen activator. Am. J. Ophthalmol. 143(1), 171–173 (2007)CrossRefGoogle Scholar
  75. 75.
    D.J. Pieramici, M. Rabena, A.A. Castellarin, M. Nasir, R. See, T. Norton, A. Sanchez, S. Risard, R.L. Avery, Ranibizumab for the treatment of macular edema associated with perfused central retinal vein occlusions. Ophthalmology 115(10), e47–e54 (2008)CrossRefGoogle Scholar
  76. 76.
    R. Margolis, R.F. Spaide, A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am. J. Ophthalmol. 147(5), 811–815 (2009)CrossRefGoogle Scholar
  77. 77.
    G.H. Bresnick, R. Condit, S. Syrjala, M. Palta, A. Groo, K. Korth, Abnormalities of the foveal avascular zone in diabetic retinopathy. Arch. Ophthalmol. 102(9), 1286–1293 (1984)CrossRefGoogle Scholar
  78. 78.
    Early Treatment Diabetic Retinopathy Study Research Group, Fluorescein angiographic risk factors for progression of diabetic retinopathy. ETDRS report number 13. Ophthalmology 98(5 Suppl), 834–840 (1991)Google Scholar
  79. 79.
    A.M. Mansour, A. Schachat, G. Bodiford, R. Haymond, Foveal avascular zone in diabetes mellitus. Retina 13(2), 125–128 (1993)CrossRefGoogle Scholar
  80. 80.
    E.J. Chung, M.I. Roh, O.W. Kwon, H.J. Koh, Effects of macular ischemia on the outcome of intravitreal bevacizumab therapy for diabetic macular edema. Retina 28(7), 957–963 (2008)CrossRefGoogle Scholar
  81. 81.
    O. Arend, S. Wolf, A. Harris, M. Reim, The relationship of macular microcirculation to visual acuity in diabetic patients. Arch. Ophthalmol. 113(5), 610–614 (1995)CrossRefGoogle Scholar
  82. 82.
    O. Arend, S. Wolf, F. Jung, B. Bertram, H. Pöstgens, H. Toonen, M. Reim, Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network. Br. J. Ophthalmol. 75(9), 514–518 (1991)CrossRefGoogle Scholar
  83. 83.
    D. Talwar, N. Sharma, A. Pai, R.V. Azad, A. Kohli, P.S. Virdi, Contrast sensitivity following focal laser photocoagulation in clinically significant macular oedema due to diabetic retinopathy. Clin. Exp. Ophthalmol. 29(1), 17–21 (2001)CrossRefGoogle Scholar
  84. 84.
    O. Arend, A. Remky, D. Evans, R. Stüber, A. Harris, Contrast sensitivity loss is coupled with capillary dropout in patients with diabetes. Invest. Ophthalmol. Vis. Sci. 38(9), 1819–1824 (1997)Google Scholar
  85. 85.
    D. McLeod, A chronic grey matter penumbra, lateral microvascular intussusception and venous peduncular avulsion underlie diabetic vitreous haemorrhage. Br. J. Ophthalmol. 91(5), 677–689 (2007)CrossRefGoogle Scholar
  86. 86.
    Early Treatment Diabetic Retinopathy Study Research Group, Classification of diabetic retinopathy from fluorescein angiograms. ETDRS report number 11. Ophthalmology 98(5 Suppl), 807–822 (1991)Google Scholar
  87. 87.
    N. Ashton, Arteriolar involvement in aiabetic retinopathy. Br. J. Ophthalmol. 37(5), 282–292 (1953)CrossRefGoogle Scholar
  88. 88.
    L.M. Jampol, Arteriolar occlusive diseases of the macula. Ophthalmology 90(5), 534–539 (1983)Google Scholar
  89. 89.
    L. Yeung, V.C. Lima, P. Garcia, G. Landa, R.B. Rosen, Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema. Ophthalmology 116(6), 1158–1167 (2009)CrossRefGoogle Scholar
  90. 90.
    N. Drasdo, C.L. Millican, C.R. Katholi, C.A. Curcio, The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vision Res. 47(22), 2901–2911 (2007)CrossRefGoogle Scholar
  91. 91.
    J. Conrath, R. Giorgi, D. Raccah, B. Ridings, Foveal avascular zone in diabetic retinopathy: quantitative vs qualitative assessment. Eye (Lond.) 19(3), 322–326 (2005)Google Scholar
  92. 92.
    J. Conrath, O. Valat, R. Giorgi, M. Adel, D. Raccah, F. Meyer, B. Ridings, Semi-automated detection of the foveal avascular zone in fluorescein angiograms in diabetes mellitus. Clin. Exp. Ophthalmol. 34(2), 119–123 (2006)CrossRefGoogle Scholar
  93. 93.
    Y. Zheng, J.S. Gandhi, A.N. Stangos, C. Campa, D.M. Broadbent, S.P. Harding, Automated segmentation of foveal avascular zone in fundus fluorescein angiography. Invest. Ophthalmol. Vis. Sci. 51(7):3653–3659 (2010)CrossRefGoogle Scholar
  94. 94.
    S.S. Hayreh, J.A. Baines, Occlusion of the posterior ciliary artery. II. Chorio-retinal lesions. Br. J. Ophthalmol. 56(10):736–753 (1972)Google Scholar
  95. 95.
    S.S. Hayreh, Posterior ciliary artery circulation in health and disease. The Weisenfeld Lecture. Invest. Ophthalmol. Vis. Sci. 45(3), 749–757 (2004)CrossRefGoogle Scholar
  96. 96.
    P.G. Theodossiadis, A.K. Kollia, P. Gogas, D. Panagiotidis, M. Moschos, G.P. Theodossiadis, Retinal disorders in preeclampsia studied with optical coherence tomography. Am. J. Ophthalmol. 133(5), 707–709 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Yonsei University Health System (YUHS)SeoulKorea

Personalised recommendations