Self-similarity and Points of Interest in Textured Images

  • Shripad Kondra
  • Alfredo Petrosino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7143)


We propose the application of symmetry for texture classification. First we propose a feature vector based on the distribution of local bilateral symmetry in textured images. This feature is more effective in classifying a uniform texture versus a non-uniform texture. The feature when used with a texton-based feature improves the classification rate and is tested on 4 texture datasets. Secondly, we also present a global clustering of texture based on symmetry.


Feature Vector Angle Distribution Symmetry Distribution Symmetry Operator Global Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1996)Google Scholar
  2. 2.
    Dana, K.J., Ginneken, B.V., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Transactions on Graphics (TOG) 18(1), 1–34 (1999)CrossRefGoogle Scholar
  3. 3.
    Hayman, E., Caputo, B., Fritz, M., Eklundh, J.-O.: On the Significance of Real-World Conditions for Material Classification. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 253–266. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Huebner, K.: A Symmetry Operator and Its Application to the RoboCup. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 274–283. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Keller, Y., Shkolnisky, Y.: An algebraic approach to symmetry detection. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3 (2004)Google Scholar
  6. 6.
    Koehler, W., Wallach, H.: Figural after-effects: an investigation of visual processes. Proc. Amer. Phil. Soc. 88, 269–357 (1944)Google Scholar
  7. 7.
    Kondra, S., Torre, V.: Texture classification using three circular filters. In: Sixth Indian Conference on Computer Vision, Graphics & Image Processing, ICVGIP 2008, pp. 429–434 (2008)Google Scholar
  8. 8.
    Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1265–1278 (2005)Google Scholar
  9. 9.
    Loy, G., Eklundh, J.O.: Detecting Symmetry and Symmetric Constellations of Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 508–521. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Manmatha, R., Sawhney, H.: Finding symmetry in intensity images. Tech. rep., University of Massachusetts Amherst MA USA (1997)Google Scholar
  11. 11.
    Park, H., Martin, G.R., Bhalerao, A.: An affine symmetric image model and its applications. IEEE Transactions on Image Processing 19(7), 1695–1705 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Stentiford, F.: Attention Based Facial Symmetry Detection. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3687, pp. 112–119. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. International Journal of Computer Vision 62(1), 61–81 (2005)CrossRefGoogle Scholar
  14. 14.
    Zavidovique, B., Ges, V.D.: The s-kernel: A measure of symmetry of objects. Pattern Recognition 40(3), 839–852 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: A comprehensive study. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop, p. 13 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shripad Kondra
    • 1
    • 2
  • Alfredo Petrosino
    • 2
  1. 1.Neuroimaging LabNational Brain Research CentreIndia
  2. 2.Department of Applied ScienceUniversity of Naples ”Parthenope”Italy

Personalised recommendations