Trans-acting Small Interfering RNAs: Biogenesis, Mode of Action, and Role in Plant Development

Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 15)

Abstract

Trans-acting siRNAs (ta-siRNA) are plant-specific endogenous small regulatory RNAs that are produced from noncoding TAS genes and guide the cleavage of specific mRNA targets. The ta-siRNA biogenesis requires an initial cut by a microRNA and the conversion of one of the resulting cleavage product into a double-stranded RNA which is then cleaved in 21-nt ta-siRNA. ta-siRNAs have the ability to act noncell autonomously and regulate the abundance of a diverse set of genes. The phylogenetically conserved TAS3 pathway controls the abundance of several ARF genes, which encode transcription factors mediating the effects of the phytohormone auxin. The TAS3 pathway controls the transition between juvenile and adult leaves, leaf polarity, and lateral root growth, three essential features of plant development.

Keywords

Lateral Root Primordia Lateral Root Length Leaf Polarity miR390 Target Site Endogenous Small RNAs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank C. Godel and I. Mägele for their reading of the manuscript. Funding was provided by the Land Baden-Wurttemberg, the Chica and Heinz Schaller Foundation, and the Cellnetworks cluster of the Heidelberg University.

References

  1. Abe M, Yoshikawa T, Nosaka M, Sakakibara H, Sato Y, Nagato Y, Itoh J (2010) WAVY LEAF1, an ortholog of Arabidopsis HEN1, regulates shoot development by maintaining MicroRNA and trans-acting small interfering RNA accumulation in rice. Plant Physiol 154:1335–1346. doi: 10.1104/pp.110.160234 PubMedCrossRefGoogle Scholar
  2. Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA Targets Identified by Sequencing of the Arabidopsis Degradome. Curr Biol 18:758–762. doi: 10.1016/j.cub.2008.04.042 PubMedCrossRefGoogle Scholar
  3. Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouche N, Gasciolli V, Vaucheret H (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16:927–932PubMedCrossRefGoogle Scholar
  4. Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36:1282–1290. doi: 10.1038/ng1478 PubMedCrossRefGoogle Scholar
  5. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221PubMedCrossRefGoogle Scholar
  6. Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673. doi: 10.1105/tpc.105.032185 PubMedCrossRefGoogle Scholar
  7. Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127:565–577PubMedCrossRefGoogle Scholar
  8. Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769. doi: 10.1105/tpc.107.051706 PubMedCrossRefGoogle Scholar
  9. Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291. doi: 10.1016/j.cell.2005.11.035 PubMedCrossRefGoogle Scholar
  10. Chen HM, Li YH, Wu SH (2007) Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc Natl Acad Sci USA 104:3318–3323. doi: 10.1073/pnas.0611119104 PubMedCrossRefGoogle Scholar
  11. Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH (2010) 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA 107:15269–15274. doi: 10.1073/pnas.1001738107 PubMedCrossRefGoogle Scholar
  12. Chitwood DH, Nogueira FT, Howell MD, Montgomery TA, Carrington JC, Timmermans MC (2009) Pattern formation via small RNA mobility. Genes Dev 23:549–554. doi: 10.1101/gad.1770009 PubMedCrossRefGoogle Scholar
  13. Cuperus JT, Montgomery TA, Fahlgren N, Burke RT, Townsend T, Sullivan CM, Carrington JC (2009) Identification of MIR390a precursor processing-defective mutants in Arabidopsis by direct genome sequencing. Proc Natl Acad Sci USA. doi: 10.1073/pnas.0913203107
  14. Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17:997–1003. doi: 10.1038/nsmb.1866 PubMedCrossRefGoogle Scholar
  15. Curaba J, Chen X (2008) Biochemical activities of Arabidopsis RNA-dependent RNA polymerase 6. J Biol Chem 283:3059–3066. doi: 10.1074/jbc.M708983200 PubMedCrossRefGoogle Scholar
  16. Douglas RN, Wiley D, Sarkar A, Springer N, Timmermans MC, Scanlon MJ (2010) Ragged seedling2 encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves. Plant Cell. doi: 10.1105/tpc.109.071613
  17. Dunoyer P, Himber C, Voinnet O (2005) DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet 37:1356–1360. doi: 10.1038/ng1675 PubMedCrossRefGoogle Scholar
  18. Dunoyer P, Schott G, Himber C, Meyer D, Takeda A, Carrington JC, Voinnet O (2010) Small RNA Duplexes Function as Mobile Silencing Signals Between Plant Cells. Science 328:912–916. doi: 10.1126/science.1185880 PubMedCrossRefGoogle Scholar
  19. Elmayan T, Adenot X, Gissot L, Lauressergues D, Gy I, Vaucheret H (2009) A neomorphic sgs3 allele stabilizing miRNA cleavage products reveals that SGS3 acts as a homodimer. FEBS J 276:835–844. doi: 10.1111/j.1742-4658.2008.06828.x PubMedCrossRefGoogle Scholar
  20. El-Shami M, Pontier D, Lahmy S, Braun L, Picart C, Vega D, Hakimi MA, Jacobsen SE, Cooke R, Lagrange T (2007) Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev 21:2539–2544. doi: 10.1101/gad.451207 PubMedCrossRefGoogle Scholar
  21. Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16:939–944. doi: 10.1016/j.cub.2006.03.065 PubMedCrossRefGoogle Scholar
  22. Fang Y, Spector DL (2007) Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 17:1–6CrossRefGoogle Scholar
  23. Felippes FF, Weigel D (2009) Triggering the formation of tasiRNAs in Arabidopsis thaliana: the role of microRNA miR173. EMBO Rep 10:264–270. doi: 10.1038/embor.2008.247 PubMedCrossRefGoogle Scholar
  24. Felippes FF, Ott F, Weigel D (2010) Comparative analysis of non-autonomous effects of tasiRNAs and miRNAs in Arabidopsis thaliana. Nucleic Acids Res. doi: 10.1093/nar/gkq1240
  25. Fujioka Y, Utsumi M, Ohba Y, Watanabe Y (2007) Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in Arabidopsis. Plant Cell Physiol 48:1243–1253. doi: 10.1093/pcp/pcm099 PubMedCrossRefGoogle Scholar
  26. Fukunaga R, Doudna JA (2009) dsRNA with 5' overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. EMBO J 28:545–555. doi: 10.1038/emboj.2009.2 PubMedCrossRefGoogle Scholar
  27. Garcia D, Collier SA, Byrne ME, Martienssen RA (2006) Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Curr Biol 16:933–938PubMedCrossRefGoogle Scholar
  28. Gasciolli V, Mallory AC, Bartel DP, Vaucheret H (2005) Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15:1494–1500PubMedCrossRefGoogle Scholar
  29. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11:1143–1149. doi: 10.1038/ncb1929 PubMedCrossRefGoogle Scholar
  30. Glick E, Zrachya A, Levy Y, Mett A, Gidoni D, Belausov E, Citovsky V, Gafni Y (2008) Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc Natl Acad Sci USA 105:157–161. doi: 10.1073/pnas.0709036105 PubMedCrossRefGoogle Scholar
  31. Han MH, Goud S, Song L, Fedoroff N (2004) The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci USA 101:1093–1098. doi: 10.1073/pnas.0307969100 PubMedCrossRefGoogle Scholar
  32. Hernandez-Pinzon I, Yelina NE, Schwach F, Studholme DJ, Baulcombe D, Dalmay T (2007) SDE5, the putative homologue of a human mRNA export factor, is required for transgene silencing and accumulation of trans-acting endogenous siRNA. Plant J 50:140–148. doi: 10.1111/j.1365-313X.2007.03043.x PubMedCrossRefGoogle Scholar
  33. Hiraguri A, Itoh R, Kondo N, Nomura Y, Aizawa D, Murai Y, Koiwa H, Seki M, Shinozaki K, Fukuhara T (2005) Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol Biol 57:173–188. doi: 10.1007/s11103-004-6853-5 PubMedCrossRefGoogle Scholar
  34. Hoffer P, Ivashuta S, Pontes O, Vitins A, Pikaard C, Mroczka A, Wagner N, Voelker T (2011) Posttranscriptional gene silencing in nuclei. Proc Natl Acad Sci USA 108:409–414. doi: 10.1073/pnas.1009805108 PubMedCrossRefGoogle Scholar
  35. Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, Givan SA, Kasschau KD, Carrington JC (2007) Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 19:926–942. doi: 10.1105/tpc.107.050062 PubMedCrossRefGoogle Scholar
  36. Hunter C, Sun H, Poethig RS (2003) The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr Biol 13:1734–1739PubMedCrossRefGoogle Scholar
  37. Hunter C, Willmann MR, Wu G, Yoshikawa M, de la Luz Gutiérrez-Nava M, Poethig SR (2006) Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133:2973–2981. doi: 10.1242/dev.02491 PubMedCrossRefGoogle Scholar
  38. Jauvion V, Elmayan T, Vaucheret H (2010) The conserved RNA trafficking proteins HPR1 and TEX1 are involved in the production of endogenous and exogenous small interfering RNA in Arabidopsis. Plant Cell 22:2697–2709. doi: 10.1105/tpc.110.076638 PubMedCrossRefGoogle Scholar
  39. Kidner CA, Timmermans MC (2010) Signaling sides: adaxial–abaxial patterning in leaves. Curr Top Dev Biol 91:141–168. doi: 10.1016/S0070-2153(10)91005-3 PubMedCrossRefGoogle Scholar
  40. Kumakura N, Takeda A, Fujioka Y, Motose H, Takano R, Watanabe Y (2009) SGS3 and RDR6 interact and colocalize in cytoplasmic SGS3/RDR6-bodies. FEBS Lett 583:1261–1266. doi: 10.1016/j.febslet.2009.03.055 PubMedCrossRefGoogle Scholar
  41. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101:12753–12758. doi: 10.1073/pnas.0403115101 PubMedCrossRefGoogle Scholar
  42. Levine E, McHale P, Levine H, Crampin EJ (2007) Small regulatory RNAs may sharpen spatial expression patterns. PLoS Comput Biol 3:e233. doi: 10.1371/journal.pcbi.0030078 PubMedCrossRefGoogle Scholar
  43. Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Curr Biol 15:1501–1507. doi: 10.1016/j.cub.2005.07.029 PubMedCrossRefGoogle Scholar
  44. Li CF, Pontes O, El-Shami M, Henderson IR, Bernatavichute YV, Chan SW, Lagrange T, Pikaard CS, Jacobsen SE (2006) An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126:93–106. doi: 10.1016/j.cell.2006.05.032 PubMedCrossRefGoogle Scholar
  45. Liu B, Chen Z, Song X, Liu C, Cui X, Zhao X, Fang J, Xu W, Zhang H et al (2007) Oryza sativa dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell 19:2705–2718. doi: 10.1105/tpc.107.052209 PubMedCrossRefGoogle Scholar
  46. Lu C, Kulkarni K, Souret FF, MuthuValliappan R, Tej SS, Poethig RS, Henderson IR, Jacobsen SE, Wang W et al (2006) MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16:1276–1288. doi: 10.1101/gr.5530106 PubMedCrossRefGoogle Scholar
  47. Luo Z, Chen Z (2007) Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis. Plant Cell 19:943–958. doi: 10.1105/tpc.106.045724 PubMedCrossRefGoogle Scholar
  48. MacLean D, Elina N, Havecker ER, Heimstaedt SB, Studholme DJ, Baulcombe DC (2010) Evidence for large complex networks of plant short silencing RNAs. PLoS One 5:e9901. doi: 10.1371/journal.pone.0009901 PubMedCrossRefGoogle Scholar
  49. Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44PubMedGoogle Scholar
  50. Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22:3879–3889. doi: 10.1105/tpc.110.080671 PubMedCrossRefGoogle Scholar
  51. Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi MD, Maizel A (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22:1104–1117. doi: 10.1105/tpc.109.072553 PubMedCrossRefGoogle Scholar
  52. Masuda S, Das R, Cheng H, Hurt E, Dorman N, Reed R (2005) Recruitment of the human TREX complex to mRNA during splicing. Genes Dev 19:1512–1517. doi: 10.1101/gad.1302205 PubMedCrossRefGoogle Scholar
  53. Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008a) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141. doi: 10.1016/j.cell.2008.02.033 PubMedCrossRefGoogle Scholar
  54. Montgomery TA, Yoo SJ, Fahlgren N, Gilbert SD, Howell MD, Sullivan CM, Alexander A, Nguyen G, Allen E et al (2008b) AGO1-miR173 complex initiates phased siRNA formation in plants. Proc Natl Acad Sci USA 105:20055–20062. doi: 10.1073/pnas.0810241105 PubMedCrossRefGoogle Scholar
  55. Mourrain P, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S et al (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101:533–542PubMedCrossRefGoogle Scholar
  56. Nagasaki H, Itoh J, Hayashi K, Hibara K, Satoh-Nagasawa N, Nosaka M, Mukouhata M, Ashikari M, Kitano H et al (2007) The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc Natl Acad Sci USA 104:14867–14871. doi: 10.1073/pnas.0704339104 PubMedCrossRefGoogle Scholar
  57. Nakazawa Y, Hiraguri A, Moriyama H, Fukuhara T (2007) The dsRNA-binding protein DRB4 interacts with the dicer-like protein DCL4 in vivo and functions in the trans-acting siRNA pathway. Plant Mol Biol 63:777–785. doi: 10.1007/s11103-006-9125-8 PubMedCrossRefGoogle Scholar
  58. Nogueira FT, Madi S, Chitwood DH, Juarez MT, Timmermans MC (2007) Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev 21:750–755. doi: 10.1101/gad.1528607 PubMedCrossRefGoogle Scholar
  59. Nogueira FT, Chitwood DH, Madi S, Ohtsu K, Schnable PS, Scanlon MJ, Timmermans MC (2009) Regulation of small RNA accumulation in the maize shoot apex. PLoS Genet 5:e1000320. doi: 10.1371/journal.pgen.1000320 PubMedCrossRefGoogle Scholar
  60. Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242. doi: 10.1101/gad.307804 PubMedCrossRefGoogle Scholar
  61. Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495PubMedCrossRefGoogle Scholar
  62. Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA 102:3691–3696. doi: 10.1073/pnas.0405570102 PubMedCrossRefGoogle Scholar
  63. Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18:2368–2379PubMedCrossRefGoogle Scholar
  64. Pontes O, Li CF, Nunes PC, Haag J, Ream T, Vitins A, Jacobsen SE, Pikaard CS (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126:79–92. doi: 10.1016/j.cell.2006.05.031 PubMedCrossRefGoogle Scholar
  65. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425. doi: 10.1101/gad.1476406 PubMedCrossRefGoogle Scholar
  66. Rehwinkel J, Herold A, Gari K, Köcher T, Rode M, Ciccarelli FL, Wilm M, Izaurralde E (2004) Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster. Nat Struct Mol Biol 11:558–566. doi: 10.1038/nsmb759 PubMedCrossRefGoogle Scholar
  67. Schwab R, Maizel A, Ruiz-Ferrer V, Garcia D, Bayer M, Crespi M, Voinnet O, Martienssen RA (2009) Endogenous TasiRNAs mediate non-cell autonomous effects on gene regulation in Arabidopsis thaliana. PLoS One 4:e5980. doi: 10.1371/journal.pone.0005980 PubMedCrossRefGoogle Scholar
  68. Shivaprasad PV, Rajeswaran R, Blevins T, Schoelz J, Meins F, Hohn T, Pooggin MM (2008) The CaMV transactivator/viroplasmin interferes with RDR6-dependent trans-acting and secondary siRNA pathways in Arabidopsis. Nucleic Acids Res 36:5896–5909. doi: 10.1093/nar/gkn590 PubMedCrossRefGoogle Scholar
  69. Smith LM, Pontes O, Searle I, Yelina N, Yousafzai FK, Herr AJ, Pikaard CS, Baulcombe DC (2007) An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell 19:1507–1521. doi: 10.1105/tpc.107.051540 PubMedCrossRefGoogle Scholar
  70. Strässer K, Masuda S, Mason P, Pfannstiel J, Oppizzi M, Rodriguez-Navarro S, Rondón AG, Aguilera A, Struhl K et al (2002) TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417:304–308. doi: 10.1038/nature746 PubMedCrossRefGoogle Scholar
  71. Talmor-Neiman M, Stav R, Klipcan L, Buxdorf K, Baulcombe DC, Arazi T (2006) Identification of trans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis. Plant J 48:511–521. doi: 10.1111/j.1365-313X.2006.02895.x PubMedCrossRefGoogle Scholar
  72. Telfer A, Poethig RS (1998) HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana. Development 125:1889–1898PubMedGoogle Scholar
  73. Telfer A, Bollman KM, Poethig RS (1997) Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development 124:645–654PubMedGoogle Scholar
  74. Till S, Lejeune E, Thermann R, Bortfeld M, Hothorn M, Enderle D, Heinrich C, Hentze MW, Ladurner AG (2007) A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat Struct Mol Biol 14:897–903. doi: 10.1038/nsmb1302 PubMedCrossRefGoogle Scholar
  75. Toriba T, Suzaki T, Yamaguchi T, Ohmori Y, Tsukaya H, Hirano HY (2010) Distinct regulation of adaxial-abaxial polarity in anther patterning in rice. Plant Cell 22:1452–1462. doi: 10.1105/tpc.110.075291 PubMedCrossRefGoogle Scholar
  76. Vazquez F, Gasciolli V, Crété P, Vaucheret H (2004a) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351. doi: 10.1016/j.cub.2004.01.035 PubMedGoogle Scholar
  77. Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Hilbert JL, Bartel DP, Crété P (2004b) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16:69–79. doi: 10.1016/j.molcel.2004.09.028 PubMedCrossRefGoogle Scholar
  78. Vazquez F, Legrand S, Windels D (2010) The biosynthetic pathways and biological scopes of plant small RNAs. Trends Plant Sci 15:337–345. doi: 10.1016/j.tplants.2010.04.001 PubMedCrossRefGoogle Scholar
  79. Wang J, Gao X, Li L, Shi X, Zhang J, Shi Z (2010) Overexpression of Osta-siR2141 caused abnormal polarity establishment and retarded growth in rice. J Exp Bot 61:1885–1895. doi: 10.1093/jxb/erp378 PubMedCrossRefGoogle Scholar
  80. Williams L, Carles CC, Osmont KS, Fletcher JC (2005) A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci USA 102:9703–9708. doi: 10.1073/pnas.0504029102 PubMedCrossRefGoogle Scholar
  81. Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547. doi: 10.1242/dev.02521 PubMedCrossRefGoogle Scholar
  82. Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759. doi: 10.1016/j.cell.2009.06.031 PubMedCrossRefGoogle Scholar
  83. Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC (2005a) Expression of Arabidopsis MIRNA genes. Plant Physiol 138:2145–2154. doi: 10.1104/pp.105.062943 PubMedCrossRefGoogle Scholar
  84. Xie Z, Allen E, Wilken A, Carrington JC (2005b) DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci USA 102:12984–12989PubMedCrossRefGoogle Scholar
  85. Xu J, Yang JY, Niu QW, Chua NH (2006) Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 18:3386–3398. doi: 10.1105/tpc.106.047605 PubMedCrossRefGoogle Scholar
  86. Yelina NE, Smith LM, Jones AM, Patel K, Kelly KA, Baulcombe DC (2010) Putative Arabidopsis THO/TREX mRNA export complex is involved in transgene and endogenous siRNA biosynthesis. Proc Natl Acad Sci USA 107:13948–13953. doi: 10.1073/pnas.0911341107 PubMedCrossRefGoogle Scholar
  87. Yoon EK, Yang JH, Lim J, Kim SH, Kim SK, Lee WS (2010) Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res 38:1382–1391. doi: 10.1093/nar/gkp1128 PubMedCrossRefGoogle Scholar
  88. Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175. doi: 10.1101/gad.1352605 PubMedCrossRefGoogle Scholar
  89. Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935. doi: 10.1126/science.1107130 PubMedCrossRefGoogle Scholar
  90. Zhang D, Trudeau VL (2008) The XS domain of a plant specific SGS3 protein adopts a unique RNA recognition motif (RRM) fold. Cell Cycle 7:2268–2270PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Stem Cell BiologyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations