Optimizing Measured Signal Intensity: Emission Angle, Incidence Angle and Surface Roughness

  • Siegfried Hofmann
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 49)


The primary aim of any analysis is a high signal intensity (count rate) that ensures a high signal to noise ratio and therefore a high sensitivity. While the ultimate limit is given by the properties of the respective instrument, its optimum settings can be chosen by the analyst within those limits. Besides primary excitation energy and power (current), the most important other parameters which can be varied and optimized by the analyst are set by the geometry between excitation source, sample, and analyzer. In any modern instrument, the sample can be tilted with respect to the analyzer axis. In this way, the angle of incidence of the primary photons or electrons and the angle of emission of Auger- or photoelectrons can be varied (Sects. 5.1 and 5.2). This variation cannot only be used to find optimum signal intensity but also to provide nondestructive depth profiles by angle-resolved XPS (AR-XPS) and AES (AR-AES) (see Sect. 7.2.1).


Incidence Angle Tilt Angle Critical Angle Emission Angle Attenuation Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 5.1.
    C.S. Fadley, J. Electron Spectrosc. Relat. Phenom. 5, 725 (1974)CrossRefGoogle Scholar
  2. 5.2.
    J. Zemek, Acta Phys. Slov. 50, 577 (2000)Google Scholar
  3. 5.3.
    P.W. Palmberg, J. Vac. Sci. Technol. 12, 379 (1975)ADSCrossRefGoogle Scholar
  4. 5.4.
    J.C. Rivière, Surface Analytical Techniques (Clarendon Press, Oxford, 1990)Google Scholar
  5. 5.5.
    J.M. Sanz, Ph.D. thesis, University of Stuttgart, Stuttgart, 1983Google Scholar
  6. 5.6.
    S. Hofmann, Analusis 9, 181 (1981)Google Scholar
  7. 5.7.
    S. Hofmann, J.M. Sanz, Surf. Interface Anal. 6, 75 (1984)CrossRefGoogle Scholar
  8. 5.8.
    R. Frech, Ph.D. thesis, University of Stuttgart, Stuttgart, 1985Google Scholar
  9. 5.9.
    J. Steffen, S. Hofmann, Fres. Z. Anal. Chem. 329, 250 (1987)CrossRefGoogle Scholar
  10. 5.10.
    S. Hofmann, J.M. Sanz, J. Trace Microprobe Technol. 1, 213 (1982–1983)Google Scholar
  11. 5.11.
    S. Hofmann, J.Y. Wang, Surf. Interface Anal. 39, 45 (2007)CrossRefGoogle Scholar
  12. 5.12.
    S. Hofmann, Depth Profiling, in Practical Surface Analysis Vol. I, AES and XPS, 2nd edn., ed. by D. Briggs, M.P. Seah (Wiley, Chichester, 1990), pp. 148–199Google Scholar
  13. 5.13.
    C.M. Theodorescu, D. Gravel, E. Ruehl, T.J. McAvoy, J. Choi, D. Pugmire, P. Pribil, J. Loos, P.A. Dowben, Rev. Sci. Instrum. 69, 3805 (1998)ADSCrossRefGoogle Scholar
  14. 5.14.
    E. Kobayashi, J. Seo, A. Nambu, K. Mase, Surf. Sci. 601, 3589 (2007)ADSCrossRefGoogle Scholar
  15. 5.15.
    J. Kawai, M. Takami, M. Fujinami, Y. Hasiguchi, S. Ayakawa, Y. Goshi, Spectrochim. Acta B 47, 983 (1992)ADSCrossRefGoogle Scholar
  16. 5.16.
    T. Jach, E. Landree, Surf. Interface Anal. 31, 768 (2001)CrossRefGoogle Scholar
  17. 5.17.
    T. Jach, M.J. Chester, S.M. Thurgate, Rev. Sci. Instrum. 65, 339 (1994)ADSCrossRefGoogle Scholar
  18. 5.18.
    Y. Iijima, K. Miyoshi, S. Saito, Surf. Interface Anal. 27, 35 (1999).CrossRefGoogle Scholar
  19. 5.19.
    M. Nagoshi, T. Kawano, N. Makiishi, Y. Baba, K. Kobayashi, Surf. Interface Anal. 40, 738 (2008)CrossRefGoogle Scholar
  20. 5.20.
    P.H. Holloway, J. Electron Spectrosc. Relat. Phenom. 7, 215 (1975)CrossRefGoogle Scholar
  21. 5.21.
    O.K.T. Wu, E.M. Butler, J. Vac. Sci. Technol. 20, 453 (1982)ADSCrossRefGoogle Scholar
  22. 5.22.
    S. Hofmann, A. Zalar, Surf. Interface Anal. 10, 7 (1987)CrossRefGoogle Scholar
  23. 5.23.
    A. Zalar, S. Hofmann, Nucl. Instrum. Methods Phys. Res. B 18, 655 (1987)CrossRefGoogle Scholar
  24. 5.24.
    P.T. Dawson, S.A. Petrone, Surf. Interface Anal. 17, 273 (1991)CrossRefGoogle Scholar
  25. 5.25.
    W.S.M. Werner, Surf. Interface Anal. 23, 696 (1995)CrossRefGoogle Scholar
  26. 5.26.
    P.L.J. Gunter, J.W. Niemantsverdriet, Appl. Surf. Sci. 89, 69 (1995)ADSCrossRefGoogle Scholar
  27. 5.27.
    P.L.J. Gunter, O.L.J. Gijzeman, J.W. Niemantsverdriet, Appl. Surf. Sci. 115, 342 (1997)ADSCrossRefGoogle Scholar
  28. 5.28.
    T. Wöhner, G. Ecke, H. Rößler, S. Hofmann, Surf. Interface Anal. 26, 1 (1998)CrossRefGoogle Scholar
  29. 5.29.
    K. Vutova, G. Mladenov, T. Tanaka, K. Kawabata, Surf. Interface Anal. 30, 552 (2000)CrossRefGoogle Scholar
  30. 5.30.
    K. Vutova, G. Mladenov, T. Tanaka, K. Kawabata, Vacuum 62 297 (2001)CrossRefGoogle Scholar
  31. 5.31.
    K. Olejnik, J. Zemek, W.S.M. Werner, Surf. Sci. 595, 212 (2005)ADSCrossRefGoogle Scholar
  32. 5.32.
    P. Kappen, K. Reihs, C. Seidel, M. Voetz, H. Fuchs, Surf. Sci. 465, 40 (2000)ADSCrossRefGoogle Scholar
  33. 5.33.
    J. Zemek, Anal. Sci. 26, 177 (2010).CrossRefGoogle Scholar
  34. 5.34.
    K. Tsutsumi, Y. Nagasawa, T. Tazawa, JEOL News E 42, 45 (2007)Google Scholar
  35. 5.35.
    A. Jablonski, C.J. Powell, Surf. Sci. 574, 219 (2005)ADSCrossRefGoogle Scholar
  36. 5.36.
    A. Jablonski, C.J. Powell, S. Tanuma, Surf. Interface Anal. 37, 861 (2005)CrossRefGoogle Scholar
  37. 5.37.
    Z.J. Ding, W.S. Tan, Y.G. Li, J. Appl. Phys. 99, 084903 (2006)ADSCrossRefGoogle Scholar
  38. 5.38.
    G.C. Smith, M.P. Seah Surf. Interface Anal. 14, 823 (1989)Google Scholar
  39. 5.39.
    J. Cazaux, Microsc. Microanal. Microstruct. 3, 271 (1992)CrossRefGoogle Scholar
  40. 5.40.
    T. Bungo, Y. Mizuhara, T. Nagatomi, Y. Takai, Jpn. J. Appl. Phys. 42, 7580 (2003)ADSCrossRefGoogle Scholar
  41. 5.41.
    L.S. De Bernardez, J. Ferron, E.C. Goldberg, R.H. Buitrago, Surf. Sci. 139, 541 (1984)CrossRefGoogle Scholar
  42. 5.42.
    W. Hösler, Surf. Interface Anal. 17, 543 (1991)CrossRefGoogle Scholar
  43. 5.43.
    M.M. El Gomati, M. Prutton, B. Lamb, C.G. Tuppen, Surf. Interface Anal. 11,251 (1988)CrossRefGoogle Scholar
  44. 5.44.
    R.R. Olson, L.A. La Vanier, D.H. Narum, Appl. Surf. Sci. 70/71, 266 (1993)Google Scholar
  45. 5.45.
    M. Mohai, I. Bertóti, Surf. Interface Anal. 36, 805 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Max-Planck-Institute for Intelligent Systems (formerly Max-Planck-Institute for Metals Research)StuttgartGermany

Personalised recommendations