Instrumentation

Chapter
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 49)

Abstract

The general arrangement of the elements of any surface analysis instrument (here electron spectrometer) is shown in Fig.1.2. Figure 2.1a shows a cross section of a typical XPS instrument and Fig.2.1b that of a typical AES spectrometer. The main parts are (1) the specimen on a sample holder with x–y–z movement stage, (2) an excitation source (X-ray source for XPS, electron gun for AES), (3) the electron energy analyzer with detector, and (4) an auxiliary ion gun. Whereas these elements are mounted within a vacuum chamber, the detection and steering electronics are placed outside in the laboratory room.

References

  1. 2.1.
    J.F. O’Hanlon, A User’s Guide to Vacuum Technology, 2nd edn. (Wiley, New York, 1989)Google Scholar
  2. 2.2.
    H.G. Tompkins, The Fundamentals of Vacuum Technology, 2nd edn. (AVS Monograph Series M–6, American Vacuum Society, New York, 1991)Google Scholar
  3. 2.3.
    V. Nemanic, T. Bogataj, Vacuum 50, 431 (1998)CrossRefGoogle Scholar
  4. 2.4.
    M.A. Kelly, ESCA, in Concise Encyclopedia of Materials Characterization, ed. by R.W. Cahn, E. Lifshin (Pergamon Press, Oxford, 1993), pp. 139–144Google Scholar
  5. 2.5.
    M. Cardona, L. Ley, Introduction, in Photoemission in Solids I, ed. by M. Cardona, L. Ley (Springer, Berlin/Heidelberg/New York, 1978), pp. 1–285CrossRefGoogle Scholar
  6. 2.6.
    J.C. Rivière Surface Analytical Techniques (Clarendon Press, Oxford 1990)Google Scholar
  7. 2.7.
    J. Kritzek, K. Berresheim, G. Panzner, Fres. Z. Anal. Chem. 329, 139 (1987)CrossRefGoogle Scholar
  8. 2.8.
    M. Escher, N. Weber, M. Merkel, C. Ziethen, P. Bernhard, G. Schoenhense, S. Schmidt, F. Forster, F. Reinert, B. Kroemker, D. Funnemann, J. Phys. Condens. Matter 17, 1329 (2005)ADSCrossRefGoogle Scholar
  9. 2.9.
    T.A. Carlson, Surf. Interface Anal. 4, 125 (1982)CrossRefGoogle Scholar
  10. 2.10.
    V. Schmidt, Electron Spectrometry of Atoms Using Synchrotron Radiation (Cambridge Scientific Press, Cambridge, 1997)CrossRefGoogle Scholar
  11. 2.11.
    G. Paolucci, J. Phys. Condens. Matter 13, 11293 (2001)ADSCrossRefGoogle Scholar
  12. 2.12.
    H.W. Nesbitt, M. Scaini, H. Hoechst, G.M. Bancroft, A.G. Schaufuss, R. Szargan, Am. Miner. 85, 850 (2000)Google Scholar
  13. 2.13.
    K. Sato, Y. Nishimura, M. Imamura, N. Matsubayashi, H. Shimada, Anal. Sci. 17(Suppl.), i1062 (2001)Google Scholar
  14. 2.14.
    K.O. Groeneveld, R. Mann, W. Meckbach, R. Spohr, Vacuum 25, 9 (1975)CrossRefGoogle Scholar
  15. 2.15.
    N.C. MacDonald, G.E. Riach, R.L. Gerlach, Res. Dev. 27, 8 (1976)Google Scholar
  16. 2.16.
    J.A. Venables, A.P. Janssen, C.J. Harland, B.A. Joyce, Philos. Mag. 34, 495 (1976)ADSCrossRefGoogle Scholar
  17. 2.17.
    J.D. Verhoeven, E.D. Gibson, J. Phys. E Sci. Instrum. 9, 65 (1976)ADSCrossRefGoogle Scholar
  18. 2.18.
    S.C. Lee, Y. Irokawa, M. Inoue, R. Shimizu, Surf. Sci. 365, 429 (1996)ADSCrossRefGoogle Scholar
  19. 2.19.
    H. Jaksch, J.P. Martin, Fres. J. Anal. Chem. 353, 378 (1995)CrossRefGoogle Scholar
  20. 2.20.
    K. Shimizu, T. Mitani, New Horizons of Applied Scanning Electron Microscopy (Springer, Berlin/Heidelberg, 2010)CrossRefGoogle Scholar
  21. 2.21.
    H. Iwai, J. Surf. Anal. 16, 114 (2009)Google Scholar
  22. 2.22.
    M. Kudo, AES Instrumentation and Performance, in Practical Surface Analysis Vol. 1 (AES and XPS), 2nd edn., ed. by D. Briggs, M.P. Seah. (Wiley, Chichester, 1990), pp. 145–166Google Scholar
  23. 2.23.
    S. Hofmann, Microchim. Acta 114/115, 21 (1994)Google Scholar
  24. 2.24.
    K. Yoshida, T. Yamada, Jpn. J. Appl. Phys. 18, 201 (1978)ADSCrossRefGoogle Scholar
  25. 2.25.
    H.R. Kaufman, J. Vac. Sci. Technol. 15, 272 (1978)MathSciNetADSCrossRefGoogle Scholar
  26. 2.26.
    C.D. Coath, J.V.P. Long, Rev. Sci. Instrum. 66, 1018 (1995)ADSCrossRefGoogle Scholar
  27. 2.27.
    A. Zalar, E.W. Seibt, P. Panjan, Appl. Surf. Sci. 101, 92 (1996)ADSCrossRefGoogle Scholar
  28. 2.28.
    J.M.B. Bakker, J. Phys. E Sci. Instrum. 6, 457 (1973)ADSCrossRefGoogle Scholar
  29. 2.29.
    J.B. Malherbe, J.M. Sanz, S. Hofmann, Surf. Interface Anal. 3, 235 (1981)CrossRefGoogle Scholar
  30. 2.30.
    S. Hofmann, A. Rar, Jpn. J. Appl. Phys. 37, L785 (1998)CrossRefGoogle Scholar
  31. 2.31.
    R. Hill, P.W.M. Blenkinsopp, Appl. Surf. Sci. 231–232, 936 (2004)CrossRefGoogle Scholar
  32. 2.32.
    F. Kollmer, Appl. Surf. Sci. 231–232, 153 (2004)CrossRefGoogle Scholar
  33. 2.33.
    S. Sun, C. Szakal, T. Roll, P. Mazarov, A. Wucher, N. Winograd, Surf. Interface Anal. 36, 1367 (2004)CrossRefGoogle Scholar
  34. 2.34.
    J.L.S. Lee, S. Ninomiya, J. Matsuo, I.S. Gilmore, M.P. Seah, A.G. Shard, Anal. Chem. 82, 98 (2010)CrossRefGoogle Scholar
  35. 2.35.
    S. Ninomiya, K. Ichiki, H. Yamada, Y. Nakata, T. Seki, T. Aoki, J. Matsuo, Surf. Interface Anal. 43, 221 (2011)CrossRefGoogle Scholar
  36. 2.36.
    R.E. Weber, W.T. Peria, J. Appl. Phys. 38, 4355 (1967)ADSCrossRefGoogle Scholar
  37. 2.37.
    N.J. Taylor, J. Vac. Sci. Technol. 6, 241 (1969)ADSCrossRefGoogle Scholar
  38. 2.38.
    P.W. Palmberg, J. Vac. Sci. Technol. 12, 379 (1975)ADSCrossRefGoogle Scholar
  39. 2.39.
    P. Staib, U. Dinklage, J. Phys. E Sci. Instrum. 10, 914 (1977)ADSCrossRefGoogle Scholar
  40. 2.40.
    M.P. Seah, Electron and Ion Energy Analysis, in Methods of Surface Analysis, ed. by J.M. Walls (Cambridge University Press, Cambridge, 1985), pp. 57–86Google Scholar
  41. 2.41.
    J.C. Riviere, Instrumentation, in Practical Surface Analysis Vol. 1 (AES and XPS), 2nd edn., ed. by D. Briggs, M.P. Seah (Wiley, Chichester, 1990), pp. 19–83Google Scholar
  42. 2.42.
    P.W. Palmberg, G.K. Bohn, J.C. Tracy, Appl. Phys. Lett. 15, 254 (1969)ADSCrossRefGoogle Scholar
  43. 2.43.
    H. Sar-El, Rev. Sci. Instrum. 38, 1210 (1967)ADSCrossRefGoogle Scholar
  44. 2.44.
    D. Varga, A. Kover, L. Redler, Nucl. Instrum. Phys. Res. A 238, 393 (1985)ADSCrossRefGoogle Scholar
  45. 2.45.
    K. Goto, H. Iwata, Y. Sakai, J. Vac. Soc. Jpn. 31, 906 (1988)CrossRefGoogle Scholar
  46. 2.46.
    K. Goto, N.N. Rahman, Y.Z. Jiang, Y. Asano, R. Shimizu, Surf. Interface Anal. 33, 245 (2002)CrossRefGoogle Scholar
  47. 2.47.
    E.N. Sickafus, D.M. Holloway, Surf. Sci. 51, 131 (1975)ADSCrossRefGoogle Scholar
  48. 2.48.
    S. Hofmann, J.M. Sanz, Fres. Z. Anal. Chem. 314, 215 (1983)CrossRefGoogle Scholar
  49. 2.49.
    G.B. Hoflund, D.M. Minahan, J. Catal. 126, 48 (1996)CrossRefGoogle Scholar
  50. 2.50.
    P. Coxon, J. Krizek, M. Humpherson, I.R.M. Wardell, J. Electron Spectrosc. 52, 821 (1990)CrossRefGoogle Scholar
  51. 2.51.
    U. Vohrer, C. Blomfield, S. Page, A. Roberts, Appl. Surf. Sci. 252, 61 (2005)ADSCrossRefGoogle Scholar
  52. 2.52.
    Sample BAM-L002, Nanoscale Strip Pattern for Length Calibration and Testing of Lateral Resolution (Bundesanstalt fuer Materialforschung (BAM), Berlin, 2003)Google Scholar
  53. 2.53.
    J.E. Castle, M.A. Baker, J. Electron Spectrosc. 105, 245 (1999)CrossRefGoogle Scholar
  54. 2.54.
    J.E. Castle, C.J. Powell, Surf. Interface Anal. 36, 225 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Max-Planck-Institute for Intelligent Systems (formerly Max-Planck-Institute for Metals Research)StuttgartGermany

Personalised recommendations