Electrophysiology of Renal Vascular Smooth Muscle Cells

  • Anita T. Layton
  • Aurélie Edwards
Part of the Lecture Notes on Mathematical Modelling in the Life Sciences book series (LMML)


Vascular contraction in the kidney is an important mechanism for regulating renal blood flow. The contractility of vascular smooth muscle cells results from signaling cascades in which intracellular calcium plays a fundamental role. This chapter begins with an overview of cell electrophysiology, and the general properties of ion channels. We then focus on Ca2+ signaling in vascular smooth muscle cells, and formulate equations that represent Ca2+ transport via ion channels, Ca2+ buffering, and Ca2+ sequestration in intracellular stores. Finally, we describe models that link variations in intracellular Ca2+ to the contractile force.


Sarcoplasmic Reticulum Contractile Force Myosin Light Chain Kinase Smooth Muscle Cell Contraction Cell Electrophysiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Blaustein, M.P., Zhang, J., et al.: How does salt retention raise blood pressure? Am. J. Physiol. Regul. Integr. Comp. Physiol. 290(3), R514–R523 (2006)Google Scholar
  2. Christova, T., Duridanova, D., et al.: Protein kinase C and smooth muscle contraction. Biomed. Rev. 8, 87–100 (1997)CrossRefGoogle Scholar
  3. De Young, G., Keizer, J.: A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentrations. Proc. Natl. Acad. Sci. U. S. A. 89, 9895–9899 (1992)CrossRefGoogle Scholar
  4. DiFrancesco, D., Noble, D.: A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 307, 353–398 (1985)CrossRefGoogle Scholar
  5. Edwards, A., Pallone, T.L.: Modification of cytosolic calcium signaling by subplasmalemmal microdomains. Am. J. Physiol. Renal Physiol. 292(6), F1827–F1845 (2007)Google Scholar
  6. Fajmut, A., Brumen, M., et al.: Theoretical model of the interactions between Ca2+, calmodulin and myosin light chain kinase. FEBS Lett. 579(20), 4361–4366 (2005)CrossRefGoogle Scholar
  7. Goldbeter, A., Dupont, G., Berridge M.J.: Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 87, 1461–1465 (1990)Google Scholar
  8. Hai, C.-M., Murphy, R.A.: Regulation of shortening velocity by cross-bridge phosphorylation in smooth muscle. Am. J. Physiol. Cell Physiol. 255, C86–C94 (1988)Google Scholar
  9. Higgins, E.R., Cannell, M.B., et al.: A buffering SERCA pump in models of calcium dynamics. Biophys. J. 91(1), 151–163 (2006)CrossRefGoogle Scholar
  10. Hille, B.: Ion channels of excitable membranes. Sinauer Associates, Sunderland (2001)Google Scholar
  11. Keener, J., Sneyd, J.: Mathematical physiology. Springer, New York (1998)zbMATHGoogle Scholar
  12. Keizer, J., Levine, L.: Ryanodine receptor adaptation and Ca2 + (−)induced Ca2+ release-dependent Ca2+ oscillations. Biophys. J. 71(6), 3477–3487 (1996)CrossRefGoogle Scholar
  13. Lee, M.R., Li, L., et al.: Cyclic GMP Causes Ca2+ Desensitization in Vascular Smooth Muscle by Activating the Myosin Light Chain Phosphatase. J. Biol. Chem. 272(8), 5063–5068 (1997)CrossRefGoogle Scholar
  14. Moore, E.D.W., Etter, E.F., et al.: Coupling of the Na+/Ca2 + exchanger, Na+/K + pump and sarcoplasmic reticulum in smooth muscle. Nature 365, 657–660 (1993)CrossRefGoogle Scholar
  15. Mullins, L.J.: A mechanism for Na/Ca transport. J. Gen. Physiol. 70(6), 681–695 (1977)CrossRefGoogle Scholar
  16. Sneyd, J., Falcke, M.: Models of the inositol trisphosphate receptor. Prog. Biophys. Mol. Biol. 89, 207–245 (2005)CrossRefGoogle Scholar
  17. Sneyd, J., Tsaneva-Atanasova, K., et al.: A model of calcium waves in pancreatic and parotid acinar cells. Biophys. J. 85, 1392–1405 (2003)CrossRefGoogle Scholar
  18. Somogyi, R., Stucki, J.W.: Hormone-induced calcium oscillations in liver cells can be explained by a simple one pool model. J. Biol. Chem. 266, 11068–11077 (1991)Google Scholar
  19. Spiro, P.A., Othmer, H.G.: The effect of heterogeneously-distributed RyR channels on calcium dynamics in cardiac myocytes. Bull. Math. Biol. 61, 651–681 (1999)CrossRefGoogle Scholar
  20. Weber, C.R., Ginsburg, K.S., et al.: Allosteric regulation of Na/Ca exchange current by cytosolic Ca in intact cardiac myocytes. J. Gen. Physiol. 117(2), 119–132 (2001)CrossRefGoogle Scholar
  21. Yano, K., Petersen, O.H., et al.: Dual sensitivity of sarcoplasmic/endoplasmic Ca2 + −ATPase to cytosolic and endoplasmic reticulum Ca2+ as a mechanism of modulating cytosolic Ca2+ oscillations. Biochem. J. 383, 353–360 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsDuke UniversityDurhamUSA
  2. 2.Centre de Recherche des Cordeliers ERL 8228, UMRS 1138 Equipe 3ParisFrance

Personalised recommendations