Collaborative Business Intelligence

  • Stefano Rizzi
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 96)

Summary

The idea of collaborative BI is to extend the decision-making process beyond the company boundaries thanks to cooperation and data sharing with other companies and organizations. Unfortunately, traditional BI applications are aimed at serving individual companies, and they cannot operate over networks of companies characterized by an organizational, lexical, and semantic heterogeneity. In such distributed business scenarios, to maximize the effectiveness of monitoring and decision making processes there is a need for innovative approaches and architectures. Data warehouse integration is an enabling technique for collaborative BI, and has been investigated along three main directions: warehousing approaches, where the integrated data are physically materialized, federative approaches, where the integration is virtual and based on a global schema, and peer-to-peer approaches, that do not rely on a global schema to integrate the component data warehouses. In this paper we explore and compare these three directions by surveying the available work in the literature. Then we outline a new peer-to-peer framework, called Business Intelligence Network, where peers expose querying functionalities aimed at sharing business information for the decision-making process. The main features of this framework are decentralization, scalability, and full autonomy of peers.

Keywords

business intelligence distributed databases query reformulation peer-to-peer architectures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lachlan, J.: Top 13 business intelligence trends for (2011), http://www.japan.yellowfin.bi
  2. 2.
    Hoang, T.A.D., Nguyen, T.B.: State of the art and emerging rule-driven perspectives towards service-based business process interoperability. In: Proc. Int. Conf. on Comp, and Comm. Tech., Danang City, Vietnam, pp. 1–4 (2009)Google Scholar
  3. 3.
    Banek, M., Vrdoljak, B., Tjoa, A.M., Skocir, Z.: Automated integration of heterogeneous data warehouse schemas. IJDWM 4(4), 1–21 (2008)Google Scholar
  4. 4.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. In: Proc. ICDT, pp. 207–224 (2003)Google Scholar
  5. 5.
    Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. PODS, pp. 233–246 (2002)Google Scholar
  6. 6.
    Halevy, A.Y.: Technical perspective - schema mappings: rules for mixing data. Commun. ACM 53(1) (2010)Google Scholar
  7. 7.
    Halevy, A.Y., Ives, Z.G., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The Piazza peer data management system. IEEE TKDE 16(7), 787–798 (2004)Google Scholar
  8. 8.
    Fuxman, A., Kolaitis, P.G., Miller, R.J., Tan, W.C.: Peer data exchange. In: Proc. PODS, pp. 160–171 (2005)Google Scholar
  9. 9.
    Tatarinov, I., Halevy, A.Y.: Efficient query reformulation in peer-data management systems. In: Proc. SIGMOD Conf., Paris, France, pp. 539–550 (2004)Google Scholar
  10. 10.
    Halevy, A.: Answering queries using views: A survey. VLDB Journal 10(4), 270–294 (2001)CrossRefGoogle Scholar
  11. 11.
    ten Cate, B., Kolaitis, P.G.: Structural characterizations of schema-mapping languages. Commun. ACM 53(1), 101–110 (2010)CrossRefGoogle Scholar
  12. 12.
    Cudré-Mauroux, P., Aberer, K., Feher, A.: Probabilistic message passing in peer data management systems. In: Proc. ICDE, Atlanta, USA, p. 41 (2006)Google Scholar
  13. 13.
    Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.Y.: Corpus-based schema matching. In: Proc. ICDE, Tokyo, Japan, pp. 57–68 (2005)Google Scholar
  14. 14.
    Mecca, G., Papotti, P., Raunich, S.: Core schema mappings. In: Proc. SIGMOD, pp. 655–668 (2009)Google Scholar
  15. 15.
    Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Trans. Database Syst. 30(1), 174–210 (2005)CrossRefGoogle Scholar
  16. 16.
    Chang, K.C., Garcia-Molina, H.: Mind your vocabulary: Query mapping across heterogeneous information sources. In: Proc. SIGMOD, pp. 335–346 (1999)Google Scholar
  17. 17.
    Papakonstantinou, Y., Abiteboul, S., Garcia-Molina, H.: Object fusion in mediator systems. In: Proc. VLDB, Bombay, India, pp. 413–424 (1996)Google Scholar
  18. 18.
    Torlone, R.: Two approaches to the integration of heterogeneous data warehouses. Distributed and Parallel Databases 23(1), 69–97 (2008)CrossRefGoogle Scholar
  19. 19.
    Jiang, H., Gao, D., Li, W.S.: Exploiting correlation and parallelism of materialized-view recommendation for distributed data warehouses. In: Proc. ICDE, Istanbul, Turkey, pp. 276–285 (2007)Google Scholar
  20. 20.
    Berger, S., Schrefl, M.: From federated databases to a federated data warehouse system. In: Proc. HICSS, Waikoloa, Big Island of Hawaii, p. 394 (2008)Google Scholar
  21. 21.
    Jindal, R., Acharya, A.: Federated data warehouse architecture (2004), http://www.wipro.com/
  22. 22.
    Albrecht, J., Lehner, W.: On-line analytical processing in distributed data warehouses. In: Proc. IDEAS, pp. 78–85 (1998)Google Scholar
  23. 23.
    Akinde, M.O., Böhlen, M.H., Johnson, T., Lakshmanan, L.V.S., Srivastava, D.: Efficient OLAP query processing in distributed data warehouses. Inf. Syst. 28(1-2), 111–135 (2003)CrossRefGoogle Scholar
  24. 24.
    Banek, M., Tjoa, A.M., Stolba, N.: Integrating Different Grain Levels in a Medical Data Warehouse Federation. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 185–194. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Schneider, M.: Integrated vision of federated data warehouses. In: Proc. DISWEB, Luxemburg (2006)Google Scholar
  26. 26.
    Berger, S., Schrefl, M.: Analysing Multi-Dimensional Data across Autonomous Data Warehouses. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 120–133. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Mangisengi, O., Huber, J., Hawel, C., Eßmayr, W.: A Framework for Supporting Interoperability of Data Warehouse Islands using XML. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114, pp. 328–338. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  28. 28.
    Tseng, F.S.C., Chen, C.W.: Integrating heterogeneous data warehouses using XML technologies. J. Information Science 31(3), 209–229 (2005)Google Scholar
  29. 29.
    Bruckner, R.M., Ling, T.W., Mangisengi, O., Tjoa, A.M.: A framework for a multidimensional OLAP model using topic maps. In: Proc. WISE (2), pp. 109–118 (2001)Google Scholar
  30. 30.
    Zhou, S., Zhou, A., Tao, X., Hu, Y.: Hierarchically distributed data warehouse. In: Proc. HPC, Washington, DC, pp. 848–853 (2000)Google Scholar
  31. 31.
    Abiteboul, S.: Managing an XML Warehouse in a P2P Context. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 4–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  32. 32.
    Abiteboul, S., Manolescu, I., Preda, N.: Constructing and querying peer-to-peer warehouses of XML resources. In: Proc. SWDB, Toronto, Canada, pp. 219–225 (2004)Google Scholar
  33. 33.
    Bonifati, A., Chang, E.Q., Ho, T., Lakshmanan, L.V.S., Pottinger, R., Chung, Y.: Schema mapping and query translation in heterogeneous P2P XML databases. VLDB J 19(2), 231–256 (2010)CrossRefGoogle Scholar
  34. 34.
    Espil, M.M., Vaisman, A.A.: Aggregate queries in peer-to-peer OLAP. In: DOLAP, Washington, DC, USA, pp. 102–111 (2004)Google Scholar
  35. 35.
    Vaisman, A., Espil, M.M., Paradela, M.: P2P OLAP: Data model, implementation and case study. Information Systems 34(2), 231–257 (2009)CrossRefGoogle Scholar
  36. 36.
    Kehlenbeck, M., Breitner, M.H.: Ontology-Based Exchange and Immediate Application of Business Calculation Definitions for Online Analytical Processing. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 298–311. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  37. 37.
    Kalnis, P., Ng, W.S., Ooi, B.C., Papadias, D., Tan, K.L.: An adaptive peer-to-peer network for distributed caching of OLAP results. In: Proc. SIGMOD, Madison, Wisconsin, pp. 25–36 (2002)Google Scholar
  38. 38.
    Dubois, D., Prade, H.: On the use of aggregation operations in information fusion processes. Fuzzy Sets and Systems 142(1) (2004)Google Scholar
  39. 39.
    Golfarelli, M., Mandreoli, F., Penzo, W., Rizzi, S., Turricchia, E.: Towards OLAP query reformulation in peer-to-peer data warehousing. In: Proc. DOLAP, pp. 37–44 (2010)Google Scholar
  40. 40.
    Golfarelli, M., Rizzi, S.: Data Warehouse design: Modern principles and methodologies. McGraw-Hill (2009)Google Scholar
  41. 41.
    Golfarelli, M., Mandreoli, F., Penzo, W., Rizzi, S., Turricchia, E.: OLAP query reformulation in peer-to-peer data warehousing. Information Systems (to appear, 2011)Google Scholar
  42. 42.
    Golfarelli, M., Mandreoli, F., Penzo, W., Rizzi, S., Turricchia, E.: BIN: Business intelligence networks. In: Business Intelligence Applications and the Web: Models, Systems and Technologies. IGI Global (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefano Rizzi
    • 1
  1. 1.Department of Electronics, Computer Sciences and Systems (DEIS)University of BolognaBolognaItaly

Personalised recommendations