Abstract
The known item search task (KIS) aims to retrieve a unique video or video clip in the video corpus. This paper presents a novel interactive video browsing system for KIS task. Our system integrates visual content-based, text-based and concept-based search approaches. It allows users to flexibly choose the search approaches. Moreover, two novel feedback schemes are employed: first, users can specify the temporal order in visual and conceptual inputs; second, users can label related samples with respect to visual, textual and conceptual features. Adopting these two feedback schemes greatly enhances search performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, X.Y., Yuan, J., et al.: TRECVID 2010 Known-item Search by NUS. In: TRECVID Workshop (2010)
Yuan, J., Zha, Z.-J., et al.: Utilizing Related Samples to Enhance Interactive Concept-based Video Search. IEEE Transactions on Multimedia (2011)
Yuan, J., Zha, Z.-J., et al.: Learning Concept Bundles for Video Search with Complex Queries. In: Proc. of ACM Int. Conf. on Multimedia (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yuan, J. et al. (2012). Video Browser Showdown by NUS. In: Schoeffmann, K., Merialdo, B., Hauptmann, A.G., Ngo, CW., Andreopoulos, Y., Breiteneder, C. (eds) Advances in Multimedia Modeling. MMM 2012. Lecture Notes in Computer Science, vol 7131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27355-1_64
Download citation
DOI: https://doi.org/10.1007/978-3-642-27355-1_64
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27354-4
Online ISBN: 978-3-642-27355-1
eBook Packages: Computer ScienceComputer Science (R0)