Understanding Adaptations and Responses to Change in Antarctica: Recent Physiological and Genomic Advances in Marine Environments

  • Lloyd S. Peck
  • Melody S. Clark
Part of the From Pole to Pole book series (POLE)


Antarctic marine environments are amongst the most extreme on Earth in several characteristics. They combine the globally lowest and most stable temperatures with the highest oxygen content and the greatest variability in other variables such as light intensity, ice cover and phytoplankton productivity (Peck et al. 2006).


Southern Ocean Antarctic Peninsula Heat Shock Response Antifreeze Protein Antarctic Fish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abele D, Brey T, Philipp E (2009) Bivalve models of aging and the determination of molluscan lifespans. Exp Gerontol 44:307–315CrossRefGoogle Scholar
  2. Abele D, Burlando B, Viarengo A (1998) Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Nacella concinna. Comp Biochem Physiol B–Biochem Molec Biol 120:425–435CrossRefGoogle Scholar
  3. Acevedo JP, Reyes F, Parra LP, Salazar O, Andrews BA, Asenjo JA (2008) Cloning of complete genes for novel hydrolytic enzymes from Antarctic sea water bacteria by use of an improved genome walking technique. J Biotechnol 133:277–286CrossRefGoogle Scholar
  4. Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, Chong KWY, Pilak O, Chew HH, De Maere MZ, Ting L, Katrib M, Ng C, Sowers KR, Galperin MY, Anderson IJ, Ivanova N, Dalin E, Martinez M, Lapidus A, Hauser L, Land M, Thomas T, Cavicchioli R (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. ISME J 3:1012–1035CrossRefGoogle Scholar
  5. Amsler CD, Iken K, McClintock JB, Baker BJ (2009) Defenses of polar macroalgae against herbivores and biofoulers. Bot Mar 52:535–545CrossRefGoogle Scholar
  6. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. Plos One 3:7CrossRefGoogle Scholar
  7. Barnes DKA, Peck LS (2005) Extremes of metabolic strategy in Antarctic bryozoa. Mar Biol 147(4):979–988CrossRefGoogle Scholar
  8. Barnes DKA, Peck LS (2008) Examining vulnerability of Antarctic shelf biodiversity to predicted climate warming. Clim Res 37:149–163CrossRefGoogle Scholar
  9. Barnes DKA, Peck L, Morley S (2010) Ecological relevance of laboratory determined temperature limits: colonisation potential, biogeography and resilience of Antarctic invertebrates to environmental change. Global Change Biol 16:3164–3169CrossRefGoogle Scholar
  10. Barnes DKA, Webb KE, Linse K (2007) Growth rate and its variability in erect Antarctic bryozoans. Polar Biol 30:1069–1081CrossRefGoogle Scholar
  11. Benedetti M, Martuccio G, Nigro M, Regoli F (2008) Comparison of antioxidant efficiency in the Antarctic notothenioid species, Trematomus bernacchii, Trematomus newnesi and Trematomus hansoni. Mar Env Res 66:98–99CrossRefGoogle Scholar
  12. Benedetti M, Nigro M, Regoli F (2010) Characterisation of antioxidant defences in three Antarctic notothenioid species from Terra Nova Bay (Ross Sea). Chem Ecol 26:305–314CrossRefGoogle Scholar
  13. Billups K, Kelly C, Pierce E (2008) The late Miocene to early Pliocene climate transition in the Southern Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 267:31–40CrossRefGoogle Scholar
  14. Bilyk KT, DeVries AL (2010) Delayed onset of adult antifreeze activity in juveniles of the Antarctic icefish Chaenocephalus aceratus. Pol Biol 33:1387–1397CrossRefGoogle Scholar
  15. Bosch I, Beauchamp KA, Steele ME, Pearse JS (1987) Development, metamorphosis and seasonal abundance of embryos and larvae of the Antarctic sea urchin Sterechinus neumayeri. Biol Bull 173:126–135CrossRefGoogle Scholar
  16. Bowgen A, Fraser KP, Peck LS, Clarke A (2007) The energetic cost of synthesizing proteins is not temperature dependent. Am J Physiol 292:R2266–R2274Google Scholar
  17. Brockington S, Peck LS (2001) Seasonality of respiration and ammonia excretion in the Antarctic echinoid Sterechinus neumayeri. Mar Ecol Progr Ser 259:159–168CrossRefGoogle Scholar
  18. Buckley BA, Place SP, Hofmann GE (2004) Regulation of heat shock genes in isolated hepatocytes from an Antarctic fish, Trematomus bernacchii. J Fish Biol 207:3649–3656Google Scholar
  19. Buttemer WA, Abele D, Costantini D (2010) From bivalves to birds: oxidative stress and longevity. Funct Ecol 24:971–983CrossRefGoogle Scholar
  20. Campbell H, Davison W, Fraser KPP, Peck LS, Egginton S (2009) Heart rate and ventilation in Antarctic fishes are largely determined by ecotype. J Fish Biol 74:535–552CrossRefGoogle Scholar
  21. Campbell HA, Fraser KPP, Bishop CM, Peck LS, Egginton S (2008) Hibernation in an Antarctic Fish: on ice for winter. Plos One 3:9CrossRefGoogle Scholar
  22. Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104:18866–18870CrossRefGoogle Scholar
  23. Chen LB, DeVries AL, Cheng C-HC (1997) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci USA 94:3811–3816CrossRefGoogle Scholar
  24. Chen ZZ, Cheng C-HC, Zhang JF, Cao LX, Chen L, Zhou LH, Jin YD, Ye H, Deng C, Dai ZH, Xu QH, Hu P, Sun SH, Shen Y, Chen LB (2008) Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. Proc Natl Acad Sci USA 103:10491–10496CrossRefGoogle Scholar
  25. Cheng CH-C, Detrich HW (2007) Molecular ecophysiology of Antarctic notothenioid fishes. Phil Trans R Soc B 362:2215–2232CrossRefGoogle Scholar
  26. Cheng CH-C, di Prisco G, Verde C (2009a) The “Icefish Paradox.” Which is the task of neuroglobin in Antarctic hemoglobin-less icefish? IUBMB Life 61:184–188CrossRefGoogle Scholar
  27. Cheng CH-C, di Prisco G, Verde C (2009b) Cold-adapted Antarctic fish: the discovery of neuroglobin in the dominant suborder Notothenioidei. Gene 433:100–101CrossRefGoogle Scholar
  28. Clark D, Lamare M, Barker M (2009) Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species. Mar Biol 156:1125–1137CrossRefGoogle Scholar
  29. Clark MS, Burns G (2008) Characterisation of the warm acclimated protein gene (wap65) in the Antarctic plunderfish (Harpagifer antarcticus). DNA Seq 19:50–55Google Scholar
  30. Clark MS, Peck LS (2009a) HSP70 Heat shock proteins and environmental stress in Antarctic marine organisms: a mini-review. Mar Gen 2:11–18CrossRefGoogle Scholar
  31. Clark MS, Peck LS (2009b) Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna). Cell Stress Chaperones 14:649–660CrossRefGoogle Scholar
  32. Clark MS, Fraser KPP, Peck LS (2008a) Lack of an HSP70 heat shock response in two Antarctic marine invertebrates. Polar Biol 31:1059–1065CrossRefGoogle Scholar
  33. Clark MS, Fraser KPP, Peck LS (2008b) Antarctic marine molluscs do have an HSP70 heat shock response. Cell Stress Chaperones 13:39–49CrossRefGoogle Scholar
  34. Clark MS, Geissler P, Waller C, Fraser KPP, Barnes DKA, Peck LS (2008c) Low heat shock thresholds in wild Antarctic inter-tidal limpets (Nacella concinna). Cell Stress Chaperones 13:51–58CrossRefGoogle Scholar
  35. Clark MS, Thorne MAS, Toullec T-Y, Meng Y, Guan L, Peck LS, Moore S (2011) Krill 454 pyrosequencing reveals chaperone and stress transcriptome. PLoS One 6:E15919CrossRefGoogle Scholar
  36. Clark MS, Thorne MAS, Vieira FA, Cardoso JCR, Power DM, Peck LS (2010) Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing. BMC Genomics 11:362CrossRefGoogle Scholar
  37. Clarke A (1988) Seasonality in the Antarctic Marine Environment. Comp Biochem Physiol B—Biochem Molec Biol 90:461–473CrossRefGoogle Scholar
  38. Clarke A, Gaston KJ (2006) Climate, energy and diversity. Proc Royal Soc B 273:2257–2266CrossRefGoogle Scholar
  39. Clarke A, Peck LS (1991) The physiology of polar marine zooplankton. In: Sakshaug E, Hopkins C, Oritsland N (eds) In: Proceedings of Pro Mare Symposium on Polar Marine Ecology, Polar Research, Trondheim, vol 10, pp 355–369Google Scholar
  40. Clarke A, Murphy EJ, Meredith MP, King JC, Peck LS, Barnes DKA (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Phil Trans R Soc 362:149–166CrossRefGoogle Scholar
  41. Csermely P (2004) Strong links are important–but weak links stabilise them. Trends Biochem Sci 29:331–334CrossRefGoogle Scholar
  42. Cummings V, Hewitt J, Van Rooyen A, Currie K, Beard S, Thrush S, Norkko J, Barr N, Heath P, Halliday NJ, Sedcole R, Gomez A, McGraw C, Metcalf V (2011) Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica. Plos One 6:11Google Scholar
  43. Deng C, Cheng C-HC, Yea H, He X, Chen L (2010) Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict. Proc Natl Acad Sci USA 107:21593–21598CrossRefGoogle Scholar
  44. Detrich HW, Johnson KA, Marcheseragona SP (1989) Polymerization of Antarctic Fish tubulins at low temperatures: energetic aspects. Biochem 28:10085–10093CrossRefGoogle Scholar
  45. Detrich HW, Williams RC (1992) Dynamic instability of Antarctic fish microtubules. Mol Biol Cell 3:A167–A167Google Scholar
  46. de Pascale D, Cusano AM, Autore F, Parrilli E, di Prisco G, Marino G, Tutino ML (2008) The cold active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of the new bacterial lipolytic enzyme family. Extremeophiles 12:311–323CrossRefGoogle Scholar
  47. DeVries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075CrossRefGoogle Scholar
  48. di Prisco G, Cocca E, Parker SK, Detrich HW (2002) Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes. Gene 295:185–191CrossRefGoogle Scholar
  49. di Prisco G, Eastman JT, Giordano D et al (2007) Biogeography and adaptation of Notothenioid fish: hemoglobin function and globin-gene evolution. Gene 398:143–155CrossRefGoogle Scholar
  50. Emerson KJ, Merz CR, Catchen JM, Hohenlohe PA, Cresko WA, Bradshaw WE, Holzapfel CM (2010) Resolving postglacial phylogeography using highthroughput sequencing. Proc Natl Acad Sci USA 107:16196–16200CrossRefGoogle Scholar
  51. Ericson JA, Lamare MD, Morley SA, Barker MF (2010) The response of two ecologically important Antarctic invertebrates (Sterechinus neumayeri and Parborlasia corrugatus) to reduced seawater pH: effects on fertilisation and embryonic development. Mar Biol 157:2689–2702CrossRefGoogle Scholar
  52. Fabry VJ, McClintock JB, Mathis JT, Grebmeier JM (2009) Ocean acidification at high Latitudes: the Bellweather. Oceanogr 22:160–171CrossRefGoogle Scholar
  53. Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A(4) orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci USA 95:11476–11481CrossRefGoogle Scholar
  54. Forcada J, Trathan PN (2009) Penguin responses to climate change in the southern ocean. Glob Change Biol 15:1618–1630CrossRefGoogle Scholar
  55. Fraser KPP, Rogers AD (2007) Protein metabolism in marine animals: the underlying mechanism of growth. Adv Mar Biol 52:267–362CrossRefGoogle Scholar
  56. Giordano D, Russo R, Coppola D, di Prisco G, Verde C (2010) Molecular adaptations in haemoglobins of notothenioid fishes. J Fish Biol 76:301–318CrossRefGoogle Scholar
  57. Gwak IG, Jung WS, Kim HJ, Kang S-H, Jin ES (2010) Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile. Mar Biotech 12:630–639CrossRefGoogle Scholar
  58. Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Ann Rev Physiol 57:19–42CrossRefGoogle Scholar
  59. Hoffman JI, Clarke A, Linse K, Peck LS (2010a) Strong population genetic structure in a broadcast-spawning Antarctic marine invertebrate. J Heredity 102:55–66CrossRefGoogle Scholar
  60. Hoffman JI, Clarke A, Linse K, Peck LS (2011) Effects of brooding and broadcasting reproductive modes on the population genetic structure of two Antarctic gastropod molluscs. Mar Biol 158:287–296CrossRefGoogle Scholar
  61. Hoffman JI, Peck LS, Hillyard G, Zieritz A, Clark MS (2010b) No evidence for genetic differentiation between Antarctic limpet Nacella concinna morphotypes. Mar Biol 157:765–778CrossRefGoogle Scholar
  62. Hofmann GE, Buckley BA, Airaksinen S, Keen JE, Somero GN (2000) Heat-shock protein expression is absent in the Antarctic fish Trematomus bernacchii family Nototheniidae. J Exp Biol 203:2331–2339Google Scholar
  63. Hudson HA, Brauer PR, Scofield MA, Petzel DH (2008) Effects of warm acclimation on serum osmolality, cortisol and hematocrit levels in the Antarctic fish, Trematomus bernacchii. Pol Biol 31:991–997CrossRefGoogle Scholar
  64. Hunter RL, Halanych KM (2008) Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the southern ocean. J Hered 99:137–148CrossRefGoogle Scholar
  65. Isely N, Lamare M, Marshall C, Barker M (2009) Expression of the DNA repair enzyme, photolyase, in developmental tissues and larvae, and in response to ambient UV-R in the Antarctic sea urchin Sterechinus neumayeri. Photochem Photobiol 85:1168–1176CrossRefGoogle Scholar
  66. Janecki T, Kidawa A, Potocka M (2010) The effects of temperature and salinity on vital biological functions of the Antarctic crustacean Serolis polita. Pol Biol 33:1013–1020CrossRefGoogle Scholar
  67. Janknegt PJ, de Graaff CM, van de Poll WH, Visser RJW, Helbling EW, Buma AGJ (2009) Antioxidative responses of two marine microalgae during acclimation to static and fluctuating natural UV nadiation. Photochem Photobiol 85:1336–1345CrossRefGoogle Scholar
  68. Johnston IA, Calvo J, Guderley H, Fernandez D, Palmer L (1998) Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in perciform fishes. J Exp Biol 201:1–12Google Scholar
  69. Kidawa A, Potocka M, Janecki T (2010) The effects of temperature on the behaviour of the Antarctic sea star Odontaster validus. Polar Res 31:273–284Google Scholar
  70. Kiko R (2010) Acquisition of freeze protection in a sea-ice crustacean through horizontal gene transfer? Polar Biol 33:543–556CrossRefGoogle Scholar
  71. Kock K-H, Everson I (1998) Age, growth and maximum size of Antarctic notothenioid fish revisited. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica: a Biological Overview. Springer, Milan, pp 29–40Google Scholar
  72. Koplovitz G, McClintock JB, Amsler CD, Baker BJ (2009) Palatability and chemical anti-predatory defenses in common ascidians from the Antarctic Peninsula. Aquat Biol 7:81–92CrossRefGoogle Scholar
  73. Kuhn E, Bellicanta GS, Pellizari VH (2009) New alk genes detected in Antarctic marine sediments. Env Microbiol 11:669–673CrossRefGoogle Scholar
  74. Lamare MD, Barker MF, Lesser MP (2007) In situ rates of DNA damage and abnormal development in Antarctic and non-Antarctic sea urchin embryos. Aquat Biol 1:21–32CrossRefGoogle Scholar
  75. La Mesa M, Ashford J (2008) Age and growth of ocellated icefish, Chionodraco rastrospinosus DeWitt-Hureau 1976, from the South Shetland Islands. Polar Biol 31:1333–1342CrossRefGoogle Scholar
  76. La Mesa M, De Felice A, Jones CD, Kock KH (2009) Age and growth of spiny icefish (Chaenodraco wilsoni Regan 1914) off Joinville-D’Urville Islands (Antarctic Peninsula). CCAMLR Sci 16:115–130Google Scholar
  77. La Terza A, Dobri N, Alimenti C, Vallesi A, Luporini P (2009) The water-borne protein signals (pheromones) of the Antarctic ciliated protozoan Euplotes nobilii: structure of the gene coding for the En-6 pheromone. Can J Microbiol 55:57–62CrossRefGoogle Scholar
  78. Lister KN, Lamare MD, Burritt DJ (2010) Sea ice protects the embryos of the Antarctic sea urchin Sterechinus neumayeri from oxidative damage due to naturally enhanced levels of UV-B radiation. J Exp Biol 213:1967–1975CrossRefGoogle Scholar
  79. Lurman G, Blaser T, Lamare M, Peck LS, Morley SA (2010) Mitochondrial plasticity in brachiopod (Liothyrella spp.) smooth adductor muscle as a result of season and latitude. Mar Biol 157:907–913CrossRefGoogle Scholar
  80. Ma WS, Mutka T, Vesley B et al (2009) Norselic acids A-E, highly oxidized anti-infective steroids that deter mesograzer predation, from the Antarctic sponge Crella sp. J Nat Prod 72:1842–1846CrossRefGoogle Scholar
  81. Mahon AR, Thornhill DJ, Norenburg JL, Halanych KM (2010) DNA uncovers Antarctic nemertean biodiversity and exposes a decades-old cold case of asymmetric inventory. Polar Biol 33:193–202CrossRefGoogle Scholar
  82. Makowski K, Bialkowska A, Olczak J, Kur J, Turkiewicz M (2007) Antarctic, cold-adapted beta-galactosidase of Pseudoalteromonas sp 22b as an effective tool for alkyl galactopyranosides synthesis. Enz Microb Technol 44:59–64CrossRefGoogle Scholar
  83. Matschiner M, Hanel R, Salzburger W (2010) Gene flow by larval dispersal in the Antarctic notothenioid fish Gobionotothen gibberifrons. Mol Ecol 18:2574–2587CrossRefGoogle Scholar
  84. McClintock JB, Amsler CD, Baker BJ (2010) Overview of the chemical ecology of benthic marine invertebrates along the Western Antarctic Peninsula. Integr Comp Biol 50:967–980CrossRefGoogle Scholar
  85. McClintock JB, Angus RA, Mcdonald MR, Amsler CD, Catledge SA, Vohra YK (2009) Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidification. Antarctic Sci 21:449–456CrossRefGoogle Scholar
  86. McNeil BI, Matear RJ (2008) Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. Proc Natl Acad Sci USA 105:18860–18864CrossRefGoogle Scholar
  87. Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604CrossRefGoogle Scholar
  88. Moore M, Manahan DT (2007) Variation among females in egg lipid content and developmental success of echinoderms from McMurdo Sound, Antarctica. Polar Biol 30:1245–1252CrossRefGoogle Scholar
  89. Morley SA, Peck LS, Miller A, Pörtner H-O (2007a) Hypoxia tolerance associated with activity reduction is a key adaptation for Laternula elliptica seasonal energetic. Oecologia 153:29–36CrossRefGoogle Scholar
  90. Morley SA, Peck LS, Tan KS, Martin SM, Pörtner H-O (2007b) Latitudinal insensitivity of burrowing capacity in the bivalve Laternula. Mar Biol 151:1823–1830CrossRefGoogle Scholar
  91. Morley SA, Hirse T, Portner HO, Peck LS (2009) Geographical variation in thermal tolerance within Southern Ocean marine ectotherms. Comp Biochem Physiol A 153:154–161CrossRefGoogle Scholar
  92. Morley SA, Clark MS, Peck LS (2010a) Depth gradients in shell morphology correlate with thermal limits for activity and ice disturbance in Antarctic limpets. J Exp Mar Biol Ecol 390:1–5CrossRefGoogle Scholar
  93. Morley SA, Griffiths HJ, Barnes DKA, Peck LS (2010b) South Georgia: a key location for linking physiological capacity to distributional changes in response to climate change. Antarctic Sci 22:774–781CrossRefGoogle Scholar
  94. Muller MN, Schulz KG, Riebesell U (2010) Effects of long-term high CO2 exposure on two species of coccolithophores. Biogeosci 7:1109–1116CrossRefGoogle Scholar
  95. Obermüller B, Peck LS, Barnes DKA, Morley SA (2010) Seasonal physiology of Antarctic marine benthic predators and scavengers. MEPS 415:109–126. doi: 10.3354/meps0873 CrossRefGoogle Scholar
  96. Pace DA, Manahan DT (2007) Cost of protein synthesis and energy allocation during development of Antarctic sea urchin embryos and larvae. Biol Bull 212:115–129CrossRefGoogle Scholar
  97. Pace DA, Maxson R, Manahan DT (2010) Ribosomal analysis of rapid rates of protein synthesis in the Antarctic sea urchin Sterechinus neumayeri. Biol Bull 218:48–60Google Scholar
  98. Park H, Ahn IY, Kim H, Cheon J, Kim M (2008) Analysis of ESTs and expression of two peroxiredoxins in the thermally stressed Antarctic bivalve Laternula elliptica. Fish Shellfish Immunol 25:550–559CrossRefGoogle Scholar
  99. Parra LP, Reyes F, Acevedo JP, Salazar O, Andrews BA, Asenjo JA (2008) Cloning and fusion expression of a cold-active lipase from marine Antarctic origin. Enz Microbial Technol 42:371–377CrossRefGoogle Scholar
  100. Pearce I, Davidson AT, Bell EM, Wright S (2007) Seasonal changes in the concentration and metabolic activity of bacteria and viruses at an Antarctic coastal site. Aquat Microbiol Ecol 43:11–23CrossRefGoogle Scholar
  101. Peck LS (2002) Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biol 25:31–40CrossRefGoogle Scholar
  102. Peck LS, Clark MS, Morley SA, Massey A, Rosetti H (2009a) Animal temperature limits: effects of size, activity and rates of change. Funct Ecol 23:248–256CrossRefGoogle Scholar
  103. Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109CrossRefGoogle Scholar
  104. Peck LS, Massey A, Thorne M, Clark MS (2009b) Lack of acclimation in Ophionotus victoriae: brittle stars are not fish. Polar Biol 32:399–402CrossRefGoogle Scholar
  105. Peck LS, Barnes DKA, Cook AJ, Fleming AH, Clarke A (2010a) Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica. Glob Change Biol 16:2614–2623CrossRefGoogle Scholar
  106. Peck LS, Morley SA, Clark MS (2010b) Poor acclimation capacities in Antarctic marine ectotherms. Mar Biol 157:2051–2059CrossRefGoogle Scholar
  107. Peck LS, Powell DK, Tyler PA (2007) Very slow development in two Antarctic bivalve molluscs, the infaunal clam, Laternula elliptica and the scallop Adamussium colbecki. Mar Biol 150:1191–1197CrossRefGoogle Scholar
  108. Peck LS, Webb KE, Clark MS, Miller A, Hill T (2008) Temperature limits to activity, feeding and metabolism in the Antarctic starfish Odontaster validus. Mar Ecol Prog Ser 381:181–189CrossRefGoogle Scholar
  109. Philipp E, Brey T, Portner HO, Abele D (2005) Chronological and physiological ageing in a polar and a temperate mud clam. Mech Age Dev 126:598–609CrossRefGoogle Scholar
  110. Place SP, Zippay ML, Hofmann GE (2004) Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes. Am J Physiol Reg Integr Comp Physiol 287:R429–R436CrossRefGoogle Scholar
  111. Pörtner H-O, Somero GA, Peck LS (2007) Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. In: Rogers A, Murphy E (eds) Antarctic ecology, from genes to ecosystems. Special Volume Phil Trans R Soc 362:2233–2258Google Scholar
  112. Powell AWB (1951) Antarctic and subanctarctic mollusca: pelecypoda and gastropoda. Discovery Rep (USA) 26:49–196Google Scholar
  113. Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–305CrossRefGoogle Scholar
  114. Pucciarelli S, La Terza A, Ballarini P et al (2009) Molecular cold-adaptation of protein function and gene regulation: the case for comparative genomic analyses in marine ciliated protozoa. Mar Gen 2:57–66CrossRefGoogle Scholar
  115. Robinson E, Davison W (2008a) The Antarctic notothenioid fish Pagothenia borchgrevinki is thermally flexible: acclimation changes oxygen consumption. Polar Biol 31:317–326CrossRefGoogle Scholar
  116. Robinson E, Davison W (2008b) Antarctic fish can survive prolonged exposure to elevated temperatures. J Fish Biol 73:1676–1689CrossRefGoogle Scholar
  117. Rodrigues E, Santos MRD, Rodrigues E, Gannabathula V, Lavrado HP (2009) Arginine metabolism of the Antarctic bivalve Laternula elliptica King-Broderip 1831: an ecophysiological approach. Polar Biol 32:691–702CrossRefGoogle Scholar
  118. Römisch K, Collie N, Soto N, Logue J, Lindsay M, Scheper W, Cheng CHC (2003) Protein translocation across the endoplasmic reticulum membrane in cold-adapted organisms. J Cell Sci 116:2875–2883CrossRefGoogle Scholar
  119. Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173:848–850CrossRefGoogle Scholar
  120. Schofield O, Ducklow HW, Martinson DG et al (2010) How do polar marine ecosystems respond to rapid climate change? Science 328:1520–1523CrossRefGoogle Scholar
  121. Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920CrossRefGoogle Scholar
  122. Sørensen JG, Loeschcke V (2007) Studying stress responses in the post-genomic era: its ecological and evolutionary role. J Biosci 32:447–456CrossRefGoogle Scholar
  123. Stanwell-Smith DP, Peck LS (1998) Temperature and embryonic development in relation to spawning and field occurrence of larvae of 3 Antarctic echinoderms. Biol Bull Woods Hole 194:44–52CrossRefGoogle Scholar
  124. Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science 301:65CrossRefGoogle Scholar
  125. Strebel H (1908) Die Gastropoden. Wissenschaftliche Ergebn Schwedisch Sudpolar-Expedition 1901–1903 6:1–112Google Scholar
  126. Sutton CP, Manning MJ, Stevens DW, Marriot PM (2008) Biological parameters for icefish (Chionobathyscus dewitti) in the Ross Sea, Antarctica. CCAMLR Sci 15:139–165Google Scholar
  127. Thorne MAS, Burns G, Fraser KPP, Hillyard G, Clark MS (2010) Transcription profiling of acute temperature stress in the Antarctic plunderfish Harpagifer antarcticus. Mar Gen 3:35–44CrossRefGoogle Scholar
  128. Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R (2010) Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ Microbiol 12:2658–2676Google Scholar
  129. Tomanek L (2010) Variation in the heat shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs. J Exp Biol 213:971–979CrossRefGoogle Scholar
  130. Truebano M, Burns G, Thorne MAS et al (2010) Transcriptional response to heat stress in the Antarctic bivalve Laternula elliptica. J Exp Mar Biol Ecol 391:65–72CrossRefGoogle Scholar
  131. Vallesi A, Alimenti C, La Terza A, Di Giuseppe G, Dini F, Luporini P (2009) Characterization of the pheromone gene family of an Antarctic and Arctic protozoan ciliate, Euplotes nobilii. Mar Gen 2:27–32CrossRefGoogle Scholar
  132. Vera JC, Wheat CW, Fescemyer HW et al (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17:1636–1647CrossRefGoogle Scholar
  133. Verde C, Giordano D, Russo R, di Prisco G (2012) The adaptive evolution of polar fishes. Lessons from the function of hemoproteins. In: di Prisco G, Verde C (eds) Adaptation and evolution in marine environments—The impacts of global change on biodiversity, vol 1. Series “From Pole to Pole”. Springer, Berlin, pp 197–213CrossRefGoogle Scholar
  134. Verde C, Parisi E, di Prisco G (2006) The evolution of thermal adaptation in polar fish. Gene 385:137–145CrossRefGoogle Scholar
  135. Verde C, Vergara A, Mazzarella L, di Prisco G (2008) The hemoglobins of fishes living at polar latitudes–current knowledge on structural adaptations in a changing environment. Curr Prot Pept Sci 9:578–590CrossRefGoogle Scholar
  136. Waller RG, Tyler PA, Smith CR (2010) Fecundity and embryo development of three Antarctic deep-water scleractinians: Flabellum thouarsii, F-curvatum and F-impensum. Deep-Sea Res Part II 55:2527–2534CrossRefGoogle Scholar
  137. Wang F, Hao JH, Yang CY, Sun M (2010) Cloning, expression, and identification of a novel extracellular cold-adapted alkaline protease gene of the marine bacterium strain YS-80-122. Appl Biochem Biothechnol 162:1497–1505CrossRefGoogle Scholar
  138. Wang QF, Hou YH, Miao JL, Li GY (2009) Effect of UV-B radiation on the growth and antioxidant enzymes of Antarctic sea ice microalgae Chlamydomonas sp ICE-L. Acta Physiol Plant 31:1097–1102CrossRefGoogle Scholar
  139. Weihe E, Kriews M, Abele D (2010) Differences in heavy metal concentrations and in the response of the antioxidant system to hypoxia and air exposure in the Antarctic limpet Nacella concinna. Mar Env Res 69:127–135CrossRefGoogle Scholar
  140. Wilson NG, Hunter RL, Lockhart SJ, Halanych KM (2007) Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar Biol 152:895–904CrossRefGoogle Scholar
  141. Wilson SL, Walker VK (2010) Selection of low-temperature resistance in bacteria and potential applications. Env Technol 32:943–956CrossRefGoogle Scholar
  142. Winston JE, Bernheimer AW (1986) Hemolytic activity in an Antarctic bryozoan. J Nat Hist 20:369–374CrossRefGoogle Scholar
  143. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar
  144. Zhang JF, Deng C, Wang JS, Chen LB (2009) Identification of a two-domain antifreeze protein gene in Antarctic eelpout Lycodichthys dearborni. Polar Biol 32:35–40CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.British Antarctic SurveyNatural Environment Research CouncilCambridgeUK

Personalised recommendations