Southern Ocean Deep-Sea Isopod Biodiversity Research: From Census to Ecosystem Functioning

  • Angelika Brandt
Part of the From Pole to Pole book series (POLE)


The isolation of Antarctica makes this continent a perfect evolutionary laboratory for studies of marine biodiversity and biogeography. Attempts to describe and explain patterns of species diversity have become a major goal in biological research since the pioneering deep-sea investigations in the early 60s of the last century.


Southern Ocean Antarctic Peninsula International Polar Year Antarctic Shelf Sediment Oxygen Consumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is grateful for scientific support to the CoML field projects CAML, CeDAMar and to SCAR for the support of ScarMarBIN. The Alfred-Wegener Institute for Polar- and Marine Sciences is thanked for logistics during the expeditions witha RV Polarstern, the German Science Foundation is thanked for financial support of the ANDEEP project (Br 1121/26). Alistair Crame’s kind review improved the paper.


  1. Arntz WE, Gutt J (eds) (1997) Report of “Polarstern” cruise ANT XIII/3 (EASIZ I) to the eastern Weddell Sea. Ber Polar- u Meeresforsch 249:1–148Google Scholar
  2. Arntz WE, Gutt J, Klages M (1997) Antarctic marine biodiversity: an overview. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities., Species, structure and survival Cambridge University Press, Cambridge, pp 3–14Google Scholar
  3. Arntz WE, Rios C (1999) Magellan-Antarctic: ecosystems that drifted apart. Sci Mar 63(Suppl 1):503Google Scholar
  4. Arntz WE, Clarke A (2002) Ecological studies in the antarctic sea ice zone. Springer, BerlinCrossRefGoogle Scholar
  5. Arntz WE, Brey T (2003) The expedition ANTARKTIS XIX/5 (LAMPOS) of RV “Polarstern” in 2002. Ber Polar- u Meeresforsch 462:1–120Google Scholar
  6. Barnes DKA, Peck LS (2008) Vulnerability of Antarctic shelf biodiversity to predicted regional warming. Clim Res 37:149–163CrossRefGoogle Scholar
  7. Barnes DKA, Conlan KE (2007) Disturbance, colonization and development of Antarctic benthic communities. In: Rogers A (ed) Antarctic ecology: from genes to ecosystems, vol 362. Royal Society, London, pp 11–38 (Phil Trans Royal Soc B)Google Scholar
  8. Brandt A (1991) Zur Besiedlungsgeschichte des antarktischen Schelfes am Beispiel der Isopoda (Crustacea, Malacostraca). Ber Polarforsch 98:1–240Google Scholar
  9. Brandt A, Brökeland W, Brix S, Malyutina M (2004) Diversity of Antarctic deep-sea Isopoda (Crustacea, Malacostraca)—a comparison with shelf data. Deep-Sea Res II 51(14–16):1753–1769CrossRefGoogle Scholar
  10. Brandt A, Hilbig B (2004) ANDEEP (ANtarctic benthic DEEP-sea biodiversity: colonization history and recent community patterns) - a tribute to Howard L Sanders. Deep-Sea Res 51(14–16):1457–1919Google Scholar
  11. Brandt A, Ebbe B (2007) ANDEEP III Antarctic benthic DEEP-sea biodiversity: colonisation history and recent community patterns. Deep-Sea Res II 54(16–17):1645–1904CrossRefGoogle Scholar
  12. Brandt A, Bathmann U, Brix S, Cisewski B, Flores H, Göcke C, Janussen D, Krägefsky S, Kruse S, Leach H, Linse K, Pakhomov E, Peeken I, Riehl T, Sauter E, Sachs O, Schüller M, Schrödl M, Schwabe E, Strass V, van Franeker J, Wilmsen E (2011) Maud rise—a snapshot through the water column. Deep-Sea Res II. doi: 10.1016/j.dsr2.2011.01.008
  13. Brandt A, De Broyer C, De Mesel I, Ellingsen KE, Gooday A, Hilbig B, Linse K, Thomson M, Tyler P (2007a) The deep benthos. In: Rogers A (ed) Antarctic ecology: from genes to ecosystems, vol B 362. Royal Society, London, pp 39–66 (Phil Trans Roy Soc)Google Scholar
  14. Brandt A, Gooday AJ, Brix SB, Brökeland W, Cedhagen T, Choudhury M, Cornelius N, Danis B, De Mesel I, Diaz RJ, Gillan DC, Ebbe B, Howe J, Janussen D, Kaiser S, Linse K, Malyutina M, Brandao S, Pawlowski J, Raupach M (2007b) The southern ocean deep sea: first insights into biodiversity and biogeography. Nature 447:307–311CrossRefGoogle Scholar
  15. Brandt A, Brökeland W, Choudhury M, Brix S, Kaiser S, Malyutina M (2007c) Deep-sea isopod biodiversity, abundance and endemism in the Atlantic sector of the Southern Ocean—results from the ANDEEP I–III expeditions. Deep-Sea Res II 54:1760–1775CrossRefGoogle Scholar
  16. Brandt A, Gutt J (2011) Biodiversity of a unique environment: the southern ocean benthos threat by climate change. In: Zachos F, Habel JC (eds) Biodiversity hotspots. Springer Publishers, Heidelberg. doi: 10.1007/978-3-642-20992-5_25Google Scholar
  17. Brey T, Dahm C, Gorny M, Klages M, Stiller M, Arntz W (1996) Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarctic Sci 8(1):3–6CrossRefGoogle Scholar
  18. Brown B, Gaina C, Müller RD (2006) Circum-Antarctic palaeobathymetry: illustrated examples from cenozoic to recent times. Palaeoceanogr Palaeoclimatol Palaeoecol 231:158–168CrossRefGoogle Scholar
  19. Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Ann Rev 41:47–114Google Scholar
  20. Clarke A, Arntz WE, Smith CR (2006) EASIZ: Ecology of the antarctic sea ice zone. Deep-Sea Res II 53:803–1140CrossRefGoogle Scholar
  21. Clarke A, Murphy EJ, Meredith MP, King JC, Peck LS, Barnes DKA, Smith RC (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Phil Trans Roy Soc London B 362:149–166CrossRefGoogle Scholar
  22. Clarke A, Griffiths HJ, Barnes DKA, Meredith MP, Grant SM (2009) Spatial variation in seabed temperatures in the southern ocean: implications for benthic ecology and biogeography. J Geophys Res 114 doi: 10.1029/2008JG000886
  23. Clarke A, Crame AJ (2010) Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas. Philos Trans R Soc B 365:3655–3666. doi: 10.1098/rstb.2010.0270 CrossRefGoogle Scholar
  24. Crame AJ (1999) An evolutionary perspective on marine faunal connections between southernmost South America and Antarctica. Sci Mar 63:1–14CrossRefGoogle Scholar
  25. Cronin TM, Raymo ME (1997) Orbital forcing of deep-sea benthic species diversity. Nature 385:624–627CrossRefGoogle Scholar
  26. Dayton PK (1990) Polar benthos. Polar Oceanogr, Part B: Chem, Biol Geol 1:631–683Google Scholar
  27. De Broyer C, Jazdzewski K, Dauby P (2003) Biodiversity in the SO: lessons from Crustacea. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, WJ Wolff (eds) Antarctic biology in a global Context, 201–214Google Scholar
  28. Dupont S, Thorndyke MC (2009) Impact of CO2-driven ocean acidification on invertebrates early life-history—What we know, what we need to know and what we can do. Biogeosci 6:3109–3131Google Scholar
  29. Flores H, van Franeker J-A, Cisewski B, Leach H, van de Putte AP, Meesters HWG, Bathmann U, Wolff WJ (2011) Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean. Deep-Sea Res II: 1948–1961 Google Scholar
  30. Fox D (2010) Could East Antarctica be headed for big melt? Science 328:1630–1631CrossRefGoogle Scholar
  31. Hartmann G (1997) Antarctic and subantarctic podocopa (ostracoda). Theses Zoologicae 26:1–355Google Scholar
  32. Held C (2003) Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context, 135–139Google Scholar
  33. Howe JA, Shimmield TM, Diaz R (2004) Deep-water sedimentary environments of the northwestern Weddell Sea and South Sandwich Islands. Antarctica. Deep-Sea Res II 51(14–16):1489–1515Google Scholar
  34. Iken K, Bluhm BA, Gradinger R (2005) Food web structure in the high Arctic Canada basin: evidence from δ13C and δ15N analysis. Polar Biol 28:238–249CrossRefGoogle Scholar
  35. Janussen D, Tendal OS (2007) Diversity and distribution of Porifera in the bathyal and abyssal Weddell Sea and adjacent areas. Deep-Sea Res II 54(16/17):1864–1875CrossRefGoogle Scholar
  36. Jamieson SSR, Sugden DE, Hulton NRJ (2010) The evolution of the subglacial landscape of Antarctica. Earth Planet Sci Lett 239:1–27CrossRefGoogle Scholar
  37. Kaiser S, Barnes DKA (2008) Southern Ocean deep-sea responses to climate change. Climate Res 37:165–179CrossRefGoogle Scholar
  38. Kaiser S, Barnes DKA, Sands CJ, Brandt A (2009) Biodiversity of the Amundsen Sea (southern ocean): spatial patterns of richness and abundance in shelf isopods. Mar Biodiv 39:27–43CrossRefGoogle Scholar
  39. Krylova EM, Sahling H (2010) Vesicomyidae (Bivalvia): current taxonomy and distribution. PLoS ONE5(4). doi: 10.1371/journal.pone.0009957
  40. Leese F, Kop A, Wägele J-W, Held C (2008) Cryptic speciation in a benthic isopod from Patagonian and Falkland Island waters and the impact of glaciations on its population structure. Frontiers Zool 5:19. doi: 10.1186/1742-9994 CrossRefGoogle Scholar
  41. Linse K, Cope T, Lörz A-N, Sands C (2007) Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae). Polar Biol 30:1059–1068CrossRefGoogle Scholar
  42. Lipps JH, Hickman CS (1982) Origin, age, and evolution of Antarctic and deep-sea faunas. In: Ernst WG, Morin JG (eds) The environment of the deep sea, vol II. Rubey, Prentic Hall, pp 324–254Google Scholar
  43. Malyutina M, Brandt A (2007) Diversity and zoogeography of Antarctic deep-sea Munnopsidae (Crustacea, Isopoda, Asellota). Deep-Sea Res II 54:1790–1805CrossRefGoogle Scholar
  44. Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the twentieth century. Geophys Res Lett 32:L19604. doi: 10.1029/2005GL024042 CrossRefGoogle Scholar
  45. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  46. Peck LS, Clarke MS, Morley SA, Massey A, Rossetti H (2009) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Functional Ecol 23:248–256CrossRefGoogle Scholar
  47. Poore GCB, Wilson GDF (1993) Marine species richness. Nature 361:597–598CrossRefGoogle Scholar
  48. Raupach MJ, Wägele J-W (2006) Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda)—a preliminary study of mitochondrial DNA in Acanthaspidia drygalskii. Ant Sci 18(2):191–198CrossRefGoogle Scholar
  49. Raupach M, Malyutina M, Brandt A, Wägele JW (2007) Molecular data reveal a highly diverse species flock within the munnopsoid deep-sea isopod Betamorpha fusiformis (Barnard 1920) (Crustacea: Isopoda: Asellota) in the SO. Deep-Sea Res II 54(16–17):1820–1831CrossRefGoogle Scholar
  50. Raupach MJ, Mayer C, Malyutina M, Wägele J-W (2009) Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data. Proc R Soc B 276:799–808. doi: 10.1098/rspb.2008.1063 CrossRefGoogle Scholar
  51. Rex MA, Stuart CT, Hessler RR, Allen JA, Sanders HL, Wilson GDF (1993) Global-scale latitudinal patterns of species diversity in the deep-sea benthos. Nature 365:636–639CrossRefGoogle Scholar
  52. Rex MA, Etter RJ, Stuart CT (1997) Large-scale patterns of species diversity in the deep-sea benthos. In: Ormond RFG, Gage JD, Angel MV (eds) Marine biodiversity: patterns and processes. Cambridge University Press, Cambridge, pp 94–122CrossRefGoogle Scholar
  53. Rex MA, McClain CR, Johnson NA, Etter RJ, Allen JA, Bouchet P, Warén A (2005) A source-sink hypothesis for abyssal biodiversity. Am Nat 165(2):163–178CrossRefGoogle Scholar
  54. Sanders HL (1965) Benthic marine diversity and the stability-time hypothesis. Brookh Symp Biol 22:78–81Google Scholar
  55. Sanders HL, Hessler RR (1969) Ecology of the deep-sea benthos. Science 163:1419–1424CrossRefGoogle Scholar
  56. Schüller M, Ebbe B (2007) Global distributional patterns of selected deep-sea polychaeta (Annelida) from the southern ocean. Deep-Sea Res II 54(16–17):1737–1751. doi: 10.1016/j.dsr2.2007.07.005 CrossRefGoogle Scholar
  57. Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Martinez Arbizu P (2008) Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol 23(9):518. doi: 10.1016/j.tree.2008.05.002 CrossRefGoogle Scholar
  58. Thomas E, Gooday AJ (1996) Cenozoic deep-sea benthic foraminifera: tracers for changes in oceanic productivity. Geology 24:355–358CrossRefGoogle Scholar
  59. Thomson MRA (2004) Geological and palaeoenvironmental history of the Scotia Sea region as a basis for biological interpretation. Deep-Sea Res II 51:1467–1487CrossRefGoogle Scholar
  60. Veit-Köhler G, Guilini K, Peeken I, Sachs O, Sauter EJ, Würzberg L (2011) Antarctic deep-sea meiofauna and bacteria react to the deposition of particulate organic matter after a phytoplankton bloom. Deep-Sea Res II 58:1983–1995 Google Scholar
  61. Wilson GDF, Hessler RR (1987) Speciation in the deep Sea. Ann Rev Ecol Syst 18:185–207CrossRefGoogle Scholar
  62. Witman JD, Etter RJ, Smith F (2004) The relationship between regional and local species diversity in marine benthic communities: a global perspective. Proc Natl Acad Sci USA 101(44):15664–15669CrossRefGoogle Scholar
  63. Würzberg L, Peters J, Brandt A (2011a) Fatty acid patterns of Southern Ocean shelf and deep sea peracarid crustaceans and a possible food source, foraminiferans. Deep-Sea Res II 58:2027–2035Google Scholar
  64. Würzberg L, Peters J, Schüller M, Flores H, Brandt A (2011b) Demersal fishes from the Antarctic shelf and deep sea: a diet study based on fatty acid patterns and gut content analyses. Deep-Sea Res II 58:2036–2042Google Scholar
  65. Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Zoological MuseumHamburgGermany

Personalised recommendations