Skip to main content

The Origin of the SCAR Programme “Evolution and Biodiversity in the Antarctic”

  • Chapter
  • First Online:

Part of the book series: From Pole to Pole ((POLE))

Abstract

Evolutionary biology covers almost all aspects of biology: “Evolution is the major unifying principle of biology, and evidence of evolutionary processes pervades all levels of biological organisation from molecules to ecosystems” (Eastman 2000).

Nothing in biology makes sense except in the light of evolution

Theodosius Dobzhansky (1973)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allcock AL, Brierley S, Thorpe JP, Rodhouse PG (1997) Restricted gene flow and evolutionary divergence between geographically separated populations of the Antarctic octopus Pareledone turqueti. Mar Biol 129:97–102

    Article  Google Scholar 

  • Anonymous (2009) Convention on biological diversity. http://www.cbd.int/

  • Arntz WE, Clarke A (eds) (2002) Ecological studies in the Antarctic sea ice zone. In: Results of EASIZ midterm symposium. Springer, Berlin, p 277

    Google Scholar 

  • Barnes DKA, Peck LS, Morley S (2010) Acute temperature sensitivity of Antarctic invertebrates determines colonisation potential, biogeography and resilience to environmental change. Global Change Biol 16:3164–3169

    Article  Google Scholar 

  • Bergstrom DM, Convey P, Huiskes AHL (eds) (2006) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht

    Google Scholar 

  • Brandt A, Brökeland W, Brix S, Malyutina M (2004a) Diversity of southern ocean deep-sea isopoda (Crustacea, Malacostraca)—a comparison with shelf data. Deep-Sea Res II Special ANDEEP 51(14–16):1753–1768

    Article  Google Scholar 

  • Brandt A, De Broyer C, Gooday AJ, Hilbig B, Thomson MRA (2004b) Introduction to ANDEEP (ANtarctic benthic DEEP-sea biodiversity: colonization history and recent community patterns) a tribute to Howard L. Sanders. Deep-Sea Res II Special ANDEEP 51(14–16):1457–1465

    Article  Google Scholar 

  • Chen L, DeVries AL, Cheng C-HC (1997) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci U S A 94:3811–3816

    Article  CAS  Google Scholar 

  • Cheng C-HC, Chen L (1999) Evolution of an antifreeze glycoprotein. Nature 401:443–444

    Article  CAS  Google Scholar 

  • Chown SL, Gaston KJ, Gremmen NJM (2000) Including the Antarctic: insights for ecologists everywhere. In: Davison W, Howard-Williams C, Broady P (eds) Antarctic ecosystems: models for wider ecological understanding. New Zealand Natural Sciences, Christchurch, pp 1–15

    Google Scholar 

  • Clarke A, Arntz WE (2006) An introduction to EASIZ (ecology of the Antarctic sea ice zone): an integrated programme of water column, benthos and bentho-pelagic coupling in the coastal environment of Antarctica. Deep Sea Res Part II 53:803–814

    Article  Google Scholar 

  • Clarke A, Barnes DKA, Hodgson DA (2005) How isolated is Antarctica? Trends Ecol Evol 20:1–3

    Article  Google Scholar 

  • Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Ann Rev 41:47–114

    Google Scholar 

  • Clarke A, Arntz WE, Smith CR (eds) (2006) EASIZ: Ecology of the Antarctic sea ice zone. Deep-Sea Res Part II, 53: 803–1140

    Google Scholar 

  • Convey P, Barnes DKA, Griffiths H, Grant S, Linse K, Thomas DN (2012) Chapter 15: Biogeography and regional classifications of Antarctica. In: Rogers AD, Johnston NM, Murphy E, Clarke A (eds) Antarctica: an extreme environment in a changing world. Blackwell, Oxford (in press)

    Google Scholar 

  • Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1877–1878

    Article  CAS  Google Scholar 

  • Convey P, Gibson J, Hillenbrand C-D, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life–challenging the history of the frozen continent? Biol Rev 83:103–117

    Article  Google Scholar 

  • Convey P, Stevens MI, Hodgson DA, Smellie JL, Hillenbrand C-D, Barnes DKA, Clarke A, Pugh PJA, Linse K, Cary SC (2009) Exploring biological constraints on the glacial history of Antarctica. Quatern Sci Rev 28:3035–3048

    Article  Google Scholar 

  • Cook A, Fox A, Vaughan D, Ferrigno J (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544

    Article  CAS  Google Scholar 

  • Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129

    Google Scholar 

  • Eastman JT (2000) Antarctic notothenioid fishes as subjects for research in evolutionary biology. Antarctic Sci 12:276–287

    Article  Google Scholar 

  • Eastman JT, Clarke A (1998) A comparison of adaptive radiations of Antarctic fish with those of non-antarctic fish. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica: a biological overview. Springer, Berlin, pp 3–26

    Google Scholar 

  • Eastman JT, Gutt J, di Prisco G (eds) (2004) Adaptive evolution of Antarctic marine organisms. Antarctic Sci 16: 1–89

    Google Scholar 

  • Gutt J, Starmans A (1998) Structure and biodiversity of megabenthos in the Weddell and Lazarev seas (Antarctic): ecological role of physical parameters and biological interactions. Polar Biol 20:229–247

    Article  Google Scholar 

  • Gutt J, Zurell D, Thomas J, Bracegirdle TJ, Cheung W, Clark MS, Convey P, Danis B, David B, De Broyer C, di Prisco G, Griffiths H, Laffont R, Peck LS, Pierrat B, Riddle MJ, Saucede T, Turner J, Verde C, Wang Z, Grimm V (2012) Correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross-disciplinary concept. Polar Res (in press)

    Google Scholar 

  • Griffiths HJ, Barnes DKA, Linse K (2009) Towards a generalized biogeography of the Southern Ocean benthos. J Biogeogr 36:162–177

    Article  Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  CAS  Google Scholar 

  • Hoffmann JI, Clarke A, Linse K, Peck LS (2011a) Effects of brooding and broadcasting reproductive modes on the population genetic structure of two Antarctic gastropod molluscs. Polar Biol 158:287–296

    Google Scholar 

  • Hoffmann JI, Peck LS, Linse K, Clarke A (2011b) Strong population genetic structure in a broadcast-spawning Antarctic marine invertebrate. J Heredity 102:55–66

    Article  Google Scholar 

  • Huiskes A (2007) Evolution and biodiversity in the Antarctic: the response of life to change. Antarctic Sci 19:279–281

    Article  Google Scholar 

  • Johannessen OM, Miles MW (2000) Arctic sea ice and climate change–will the ice disappear in this century? Sci Prog 83:209–222

    Google Scholar 

  • Moline MA, Karnovsky NJ, Brown Z, Divoky GJ, Frazer TK, Jacoby CA, Torres JJ, Fraser WR (2008) High latitude changes in ice dynamics and their impact on polar marine ecosystems. Ann NY Acad Sci 1134:267–319

    Article  Google Scholar 

  • Morley SA, Hirse T, Pörtner H-O, Peck LS (2009) Geographical variation in thermal tolerance within southern ocean marine ectotherms. Comp Biochem Physiol A 153:154–161

    Article  Google Scholar 

  • Murphy EJ, Cavanagh RD, Johnston NM, Reid K, Hofmann EE (eds) (2008) Integrating climate and ecosystem dynamics in the southern ocean (ICED): a circumpolar ecosystem programme. Science plan and implementation strategy. GLOBEC Report No. 26/IMBER Report No 2, GLOBEC International project office, Plymouth

    Google Scholar 

  • Overpeck JT, Otto-Bliesner BL, Miller GH, Muhs DR, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:1747–1750

    Article  CAS  Google Scholar 

  • Peck LS (2011) Organisms and responses to environmental change. Mar Gen 4:237–243

    Article  Google Scholar 

  • Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109

    Article  Google Scholar 

  • Pimm SL (2009) Climate disruption and biodiversity. Curr Biol 19:R595–R601

    Article  CAS  Google Scholar 

  • Pörtner H-O, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    Article  Google Scholar 

  • Pörtner H-O, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    Article  Google Scholar 

  • Pörtner H-O, Peck L, Somero GN (2007) Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos Trans R Soc B: Biol Sci 362:2233–2258

    Article  Google Scholar 

  • Pugh PJA, Convey P (2008) Surviving out in the cold: Antarctic endemic invertebrates and their refugia. J Biogeog 35:2176–2186

    Article  Google Scholar 

  • Rodhouse PG, Fanta E, di Prisco G, Hureau J-C (eds) (2000) Evolutionary biology of Antarctic organisms. Antarctic Sci 12:257–393

    Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357

    Article  CAS  Google Scholar 

  • Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine “winners” and “losers”. J Exp Biol 213:912–920

    Article  CAS  Google Scholar 

  • Summerhayes CP (2011) A history of SCAR, 2004–2010. SCAR Occasional Publication, SCAR, Cambridge. ISBN 978-0-948277-26-9

    Google Scholar 

  • Turner J, Bindschadler R, Convey P, di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski PA, Summerhayes CP (eds) (2009a) Antarctic Climate Change and the Environment. Scientific Committee for Antarctic Research, Cambridge, UK. xi + 526. http://www.scar.org

  • Turner J, Comiso JC, Marshall GJ, Lachlan-Cope TA, Bracegirdle TJ, Maksym T, Meredith MP, Wang Z, Orr A (2009b) Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys Res Lett 36:L08502. doi:10.1029/2009GL037524

  • Vyverman W, Verleyen E, Wilmotte A, Hodgson DA, Willem A, Peeters K, Van de Vijver B, De Wever A, Leliaert F, Sabbe K (2010) Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci 4:103–113

    Google Scholar 

  • Walsh JE, Timlin MS (2003) Northern hemisphere sea-ice simulations by global climate models. Polar Res 22:75–82

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Parmesan C, Menzel M, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  • Zane L, Ostellari L, Maccatrozzo L, Bargelloni L, Battaglia B, Patarnello T (1998) Molecular evidence for genetic subdivision of Antarctic krill (Euphausia superba DANA) populations. Proc R Soc London: Biol Sci 265:2387–2391

    Article  CAS  Google Scholar 

Download references

Acknowledgements

EBA is greater than the sum of its parts, and we firstly gratefully acknowledge the enthusiastic participation and contributions of the vast community of involved scientists. We specifically wish to gratefully acknowledge the late Edith Fanta, who (besides being active in CCAMLR, SCAR and IPY) gave outstanding, efficient and enthusiast contributions first to launching EVOLANTA and then EBA. EBA research also falls in the framework of the project CAREX (Coordination Action for Research Activities on Life in Extreme Environments), European Commission FP7 call ENV.2007.2.2.1.6. We are grateful to Prof. Andy Clarke for his helpful and constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido di Prisco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

di Prisco, G., Convey, P. (2012). The Origin of the SCAR Programme “Evolution and Biodiversity in the Antarctic”. In: di Prisco, G., Verde, C. (eds) Adaptation and Evolution in Marine Environments, Volume 1. From Pole to Pole. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27352-0_1

Download citation

Publish with us

Policies and ethics