Skip to main content

Catalysis and Protein Folding in Extreme Temperature Environments

  • Chapter
  • First Online:
Adaptation and Evolution in Marine Environments, Volume 2

Part of the book series: From Pole to Pole ((POLE))

  • 1090 Accesses

Abstract

The diversity of life partially derives from the various characteristics of natural environments encountered on planet Earth suggesting that an organism, embedded in an environment exhibiting specific properties, will benefit from physiological and biochemical adjustments tending to optimize the adequacy between this environment and the overall characteristics of the organism. Some environments are extreme meaning that as such they are not suitable for organisms such as human being or Escherichia coli which are commonly exposed to moderate temperatures, pH close to neutrality, atmospheric oxygen, low salinity and low pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beadle BM, Baase WA, Wilson DB, Gilkes NR, Shoichet BK (1999) Comparing the thermodynamic stabilities of a related thermophilic and mesophilic enzyme. Biochemistry 38:2570–2576

    Article  CAS  Google Scholar 

  • Bentahir M, Feller G, Aittaleb M, Lamotte-Brasseur J, Himri T, Chessa J-P, Gerday C (2000) Structural, kinetic and calorimetric characterization of the cold-active phosphoglycerate kinase from the Antarctic Pseudomonas sp. TACII18. J Biol Chem 275:11147–11153

    Article  CAS  Google Scholar 

  • Bjelic S, Brandsdal BO, Aqvist J (2008) Cold adaptation of enzyme reaction rates. Biochemistry 47:10049–10057

    Article  CAS  Google Scholar 

  • Braig K, Otwinowski Z, Hedge R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (1994) The crystal-structure of the bacterial chaperonin groel at 2.8-Ångstrom. Nature 371:578–586

    Article  CAS  Google Scholar 

  • Brock TD (1967) Microorganisms adapted to high temperatures. Nature 214:882–885

    Article  CAS  Google Scholar 

  • Casanueva A, Tuffin M, Cary C, Cowan DA (2010) Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol 18:374–381

    Article  CAS  Google Scholar 

  • Chessa J-P, Petrescu I, Bentahir M, Van Beeumen J, Gerday C (2000) Purification, physico-chemical characterization and sequence of a heat labile alkaline metalloprotease isolated from a psychrophilic Pseudomonas species. Biochim Biophys Acta 1479:265–274

    Article  CAS  Google Scholar 

  • Collins T, Meeuwis MA, Gerday C, Feller G (2003) Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J Mol Biol 328:419–428

    Article  CAS  Google Scholar 

  • Collins T, D’Amico S, Marx J-C, Feller G, Gerday C (2007) Cold-adapted enzymes. In: Gerday C, Glansdorff N (eds) Physiology and Biochemistry of extremophiles. ASM Press, Washington, pp 165–170

    Google Scholar 

  • Collins T, Roulling F, Piette F, Marx J-C, Feller G, Gerday C, D’Amico S (2008) Fundamentals of cold-adapted enzymes. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles, from biodiversity to biotechnology. Springer-Verlag, Berlin, pp 211–227

    Chapter  Google Scholar 

  • Coquelle N, Fioravanti E, Weik M, Vellieux F, Madern D (2007) Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. J Mol Biol 374:547–562

    Article  CAS  Google Scholar 

  • D’Amico S, Marx J-C, Gerday C, Feller G (2003) Activity-stability relationships in extremophilic enzymes. J Biol Chem 278:7891–7896

    Article  Google Scholar 

  • Del Vecchio P, Elias M, Merone L, Graziano G, Dupuy J, Mandrich L, Carullo P, Fournier B, Rochu D, Rossi M, Masson P, Chabriere E, Manco G (2009) Structural determinants of the high thermal stability of SsoPox from the hyperthermophilic archaeon Sulfolobus solfataricus. Extremophiles 13:461–470

    Article  CAS  Google Scholar 

  • Deming JW (2007) Life in ice formation at very low temperatures. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, pp 133–144

    Google Scholar 

  • Ditzel L, Löwe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S (1998) Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93:125–138

    Article  CAS  Google Scholar 

  • Feller G (2010) Protein stability and enzyme activity at extreme biological temperatures. J Phys Condens Matter 22:32101–321018

    Article  Google Scholar 

  • Ferbitz L, Maier T, Patzelt H, Bukau B, Deurling E, Ban N (2004) Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431:590–596

    Article  CAS  Google Scholar 

  • Garcia-Viloca M, Gao J, Karplus L, Truhlar DG (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186–195

    Article  CAS  Google Scholar 

  • Georlette D, Damien B, Blaise V, Depierreux E, Uversky VN, Gerday C, Feller G (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic and thermophilic DNA ligases. J Biol Chem 278:37015–37023

    Article  CAS  Google Scholar 

  • Gerday C (2011) Life at the extreme of temperature. In: Storz G, Hengge R (eds) Bacterial stress response. ASM Press, Washington, pp 425–444

    Google Scholar 

  • Gilichinski D, Vishnivetskaya M, Petrova M, Spirina E, Mamykin V, Rivkina E (2007) Bacteria in permafrost. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer-Verlag, Berlin, pp 83–102

    Google Scholar 

  • Goodchild A, Saunders NF, Erlan H, Raftery M, Guilhaus M, Curmi PM, Cavicchioli R (2004) A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53:309–321

    Article  CAS  Google Scholar 

  • Hoffmann A, Bukau B, Kramer G (2010) Structure and function of the molecular chaperone, trigger factor. Biochim Biophys Acta 1803:650–661

    Article  CAS  Google Scholar 

  • Huo Y, Hu Z, Zhang K, Wang L, Zhai Y, Zhou Q, Lander G, Zhu J, He Y, Pang X, Xu W, Bartlam M, Don Z, Sun F (2010) Crystal structure of group II chaperonin in the open state. Structure 18:1270–1279

    Article  CAS  Google Scholar 

  • Kandror O, Goldberg AL (1997) Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci U S A 94:4978–4981

    Article  CAS  Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934

    Article  CAS  Google Scholar 

  • Kawamoto J, Kurihara T, Kitagawa M, Kato I, Esaki N (2007) proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis Ac 10, for global identification of cold-inducible proteins. Extremophiles 10:819–826

    Article  Google Scholar 

  • Kumar S, Tsai C-J, Nussinov R (2002) Maximal stabilities of reversible two-state proteins. Biochemistry 41:5359–5374

    Article  CAS  Google Scholar 

  • Li WF, Zhou PL (2005) Structural features of thermozymes. Biotechnol Adv 23:271–281

    Article  CAS  Google Scholar 

  • Liu CP, Perrett S, Zhou JM (2005) Dimeric trigger factor stably binds folding-competent intermediates and cooperates with the DnaK-DnaJ-GrpE chaperone system to allow refolding. J Biol Chem 280:13315–13320

    Article  CAS  Google Scholar 

  • Liu CP, Zhou QM, Fan DJ, Zhou JM (2010) PPIase domain of trigger factor acts as auxiliary chaperone site to assist the folding of protein substrates bound to the crevice of trigger factor. Int J Biochem Cell Biol 42:890–901

    Article  Google Scholar 

  • Lonhienne T, Gerday C, Feller G (2001) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543:1–10

    Article  Google Scholar 

  • Luke KA, Higgins CL, Wittung-Stafshede P (2007) Thermodynamic stability and folding of proteins from hyperthermophilic organisms. FEBS J 274:4023–4033

    Article  CAS  Google Scholar 

  • Margesin R (2009) Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13:257–262

    Article  Google Scholar 

  • Martinez-Hackert E, Hendrickson WA (2007) Structure of and interactions between domains of trigger factor from Thermotoga maritima. Acta Crystallogr Sect D63:536–547

    Google Scholar 

  • Martinez-Hackert E, Hendrickson WA (2009) Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell 138:923–934

    Article  CAS  Google Scholar 

  • Marx J-C, Collins T, D’Amico S, Feller G, Gerday C (2006) Cold-adapted enzymes from marine Antarctic microorganisms. Mar Biotechnol 9:293–304

    Article  Google Scholar 

  • Meng G, Xia-Yu X, Xian-Ming P (2008) Salt bridges in the hyperthermophilic protei Ssh10b are resilient to temperature increases. J Biol Chem 283:31690–31696

    Article  Google Scholar 

  • Nakamura A, Takumi K, Miki K (2010) Crystal structure of a thermophilic GrpE protein: insight into thermosensing function for the DnaK chaperone system. J Mol Biol 396:1000–1011

    Article  CAS  Google Scholar 

  • Okada J, Okamoto T, Mukaiyama A, Tadokoro T, You D-J, Chon H, Koga Y, Takano K, Kanaya S (2010) Evolution and thermodynamics of the slow unfolding of hyperstable monomeric proteins. BMC Evol Biol 10:207–218

    Article  Google Scholar 

  • Piette F, D’Amico S, Struvay C, Mazzuchelli G, Renaut J, Tutino ML, Danchin A, Leprince P, Feller G (2010) Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. Mol Microbiol 76:120–132

    Article  CAS  Google Scholar 

  • Piette F, D’Amico S, Mazzucchelli G, Danchin A, Leprince P, Feller G (2011b) Life in the cold: a proteomic study of cold-repressed proteins in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol 77:3881–3883

    Article  Google Scholar 

  • Piette F, Struvay C, Feller G (2011a) The protein folding challenge in psychrophiles: facts and current issues. Environ Microbiol 13:1924–1933

    Article  CAS  Google Scholar 

  • Popp SL, Reinstein J (2009) Functional characterization of the DnaK chaperone system from the archaeon Methanothermobacter thermoautrophicus ΔH. FEBS Lett 583:573–578

    Article  CAS  Google Scholar 

  • Priyakumar UD, Ramakrishna S, Nagarjuna KR, Reddy SK (2010) Structural and energetic determinants of thermal stability and hierarchical unfolding pathways of hyperthermophilic proteins, Sac7d and Sso7d. J Phys Chem B 114:1707–1718

    Article  CAS  Google Scholar 

  • Qiu Y, Kathariou S, Lubman DM (2006) Proteomic analysis of cold adaptation in a Siberian permafrost bacterium Exiguobacterium sibiricum 255–15 by two-dimensional liquid separation coupled with mass spectrometry. Proteomics 6:5221–5233

    Article  CAS  Google Scholar 

  • Razvi A, Scholtz JM (2006) Lessons in stability from thermophilic proteins. Protein Sci 15:1569–1578

    Article  CAS  Google Scholar 

  • Rodrigues DF, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC Genomics 9:547

    Article  Google Scholar 

  • Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  CAS  Google Scholar 

  • Sawle L, Ghosh K (2011) How do thermophilic proteins and proteosomes withstand high temperature? Biophys J 101:217–227

    Article  CAS  Google Scholar 

  • Schlee S, Reinstein J (2002) The DnaK/ClpB chaperone system from Thermus thermophilus. Cell Mol Life Sci 59:1598–1606

    Article  CAS  Google Scholar 

  • Smalås AO, Leiros HK, Os V, Willassen NP (2000) Cold adapted enzymes. Biotechnol Annu Rev 6:1–57

    Article  Google Scholar 

  • Sonan GK, Receveur-Bréchot V, Duez C, Aghajari N, Czjzek M, Haser R, Gerday C (2007) The linker region plays a key role in the adaptation to cold of the cellulose from an Antarctic bacterium. Biochem J 407:293–302

    Article  CAS  Google Scholar 

  • Suzuki Y, Haruki M, Takano K, Morikawa M, Kanaya S (2004) Possible involvement of an FKBP family member protein from a psychrotrophic bacterium, Shewanella sp. SIB1 in cold adaptation. Eur J Biochem 271:1372–1381

    Article  CAS  Google Scholar 

  • Tartaglia GG, Dobson CM, Hartl FU, Vendruscolo M (2010) Physicochemical determinants of chaperone requirements. J Mol Biol 400:579–588

    Article  CAS  Google Scholar 

  • Techtmann SM, Robb FT (2010) Archaeal-like chaperonins in bacteria. Proc Natl Acad Sci U S A 107:20269–20274

    Article  CAS  Google Scholar 

  • Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R (2010) Cold adaptation in the marine bacterium, Shingopyxis alaskensis assessed using quantitative proteomics. Environ Microbiol 12:2658–2676

    CAS  Google Scholar 

  • Tsigos I, Velonia K, Smonou I, Bouriotis V (1998) Purification and characterization of an alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE 123. Eur J Biochem 254:356–362

    Article  CAS  Google Scholar 

  • Van de Vossenberg JL, Ubbink-Kok T, Elferink MG, Driessen AJ, Konings WN (1995) Ion permeability of the cytoplasmic membrane limits the maximum growth temperatures of bacteria and archaea. Mol Microbiol 18:925–932

    Article  Google Scholar 

  • Vemparala S, Mehrotra S, Balaram H (2011) Role of loop dynamics in thermal stability of mesophilic and thermophilic adenylsuccinate synthetase: a molecular dynamics and normal mode analysis study. Biochim Biophys Acta 1814:630–637

    Article  CAS  Google Scholar 

  • Vieille C, Zeikus G (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  CAS  Google Scholar 

  • Xie B-B, Bian F, Chen X-L, He H-L, Guo J, Gao X, Zeng Y-X, Chen B, Zhou B-C, Zhang Y-Z (2009) Cold adaptation of zinc metalloprotease in the thermolysin family from deep sea and Arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics. J Biol Chem 284:9257–9269

    Article  CAS  Google Scholar 

  • Yébenes H, Mesa P, Munoz IG, Montoya G, Valpuesta JM (2011) Chaperonins: two rings for folding. Trends Biochem Sci 36:424–432

    Article  Google Scholar 

  • Zecchinon L, Oriol A, Netzel U, Svennberg J, Gerardin-Otthiers N, Feller G (2005) Stability domains, substrate-induced conformational changes and hinge-bending motions in a psychrophilic phosphoglycerate kinase. A microcalorimetric study. J Biol Chem 280:1307–41314

    Article  Google Scholar 

  • Zhang J, Baker ML, Schröder GF, Douglas NR, Reissman S, Jakane J, Dougherty M, Fuc J, Levitt M, Ludtke SJ, Frydman J, Chiu W (2010) Mechanisms of folding chamber closure in a group II chaperonin. Nature 463:379–383

    Article  CAS  Google Scholar 

  • Zheng S, Ponder MA, Shih JY, Yiedje JM, Thomashow MF, Lubman DM (2007) A proteomic analysis of Psychrobacter arcticus 273–4 adaptation to low temperature and salinity using a 2-D liquid mapping approach. Electrophoresis 28:467–488

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Gerday .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerday, C. (2013). Catalysis and Protein Folding in Extreme Temperature Environments. In: Verde, C., di Prisco, G. (eds) Adaptation and Evolution in Marine Environments, Volume 2. From Pole to Pole. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27349-0_6

Download citation

Publish with us

Policies and ethics