Catalysis and Protein Folding in Extreme Temperature Environments

  • Charles GerdayEmail author
Part of the From Pole to Pole book series (POLE)


The diversity of life partially derives from the various characteristics of natural environments encountered on planet Earth suggesting that an organism, embedded in an environment exhibiting specific properties, will benefit from physiological and biochemical adjustments tending to optimize the adequacy between this environment and the overall characteristics of the organism. Some environments are extreme meaning that as such they are not suitable for organisms such as human being or Escherichia coli which are commonly exposed to moderate temperatures, pH close to neutrality, atmospheric oxygen, low salinity and low pressure.


Salt Bridge Trigger Factor Thermophilic Protein Thermophilic Enzyme Thermophilic Organism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Beadle BM, Baase WA, Wilson DB, Gilkes NR, Shoichet BK (1999) Comparing the thermodynamic stabilities of a related thermophilic and mesophilic enzyme. Biochemistry 38:2570–2576CrossRefGoogle Scholar
  2. Bentahir M, Feller G, Aittaleb M, Lamotte-Brasseur J, Himri T, Chessa J-P, Gerday C (2000) Structural, kinetic and calorimetric characterization of the cold-active phosphoglycerate kinase from the Antarctic Pseudomonas sp. TACII18. J Biol Chem 275:11147–11153CrossRefGoogle Scholar
  3. Bjelic S, Brandsdal BO, Aqvist J (2008) Cold adaptation of enzyme reaction rates. Biochemistry 47:10049–10057CrossRefGoogle Scholar
  4. Braig K, Otwinowski Z, Hedge R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (1994) The crystal-structure of the bacterial chaperonin groel at 2.8-Ångstrom. Nature 371:578–586CrossRefGoogle Scholar
  5. Brock TD (1967) Microorganisms adapted to high temperatures. Nature 214:882–885CrossRefGoogle Scholar
  6. Casanueva A, Tuffin M, Cary C, Cowan DA (2010) Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol 18:374–381CrossRefGoogle Scholar
  7. Chessa J-P, Petrescu I, Bentahir M, Van Beeumen J, Gerday C (2000) Purification, physico-chemical characterization and sequence of a heat labile alkaline metalloprotease isolated from a psychrophilic Pseudomonas species. Biochim Biophys Acta 1479:265–274CrossRefGoogle Scholar
  8. Collins T, Meeuwis MA, Gerday C, Feller G (2003) Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J Mol Biol 328:419–428CrossRefGoogle Scholar
  9. Collins T, D’Amico S, Marx J-C, Feller G, Gerday C (2007) Cold-adapted enzymes. In: Gerday C, Glansdorff N (eds) Physiology and Biochemistry of extremophiles. ASM Press, Washington, pp 165–170Google Scholar
  10. Collins T, Roulling F, Piette F, Marx J-C, Feller G, Gerday C, D’Amico S (2008) Fundamentals of cold-adapted enzymes. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles, from biodiversity to biotechnology. Springer-Verlag, Berlin, pp 211–227CrossRefGoogle Scholar
  11. Coquelle N, Fioravanti E, Weik M, Vellieux F, Madern D (2007) Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. J Mol Biol 374:547–562CrossRefGoogle Scholar
  12. D’Amico S, Marx J-C, Gerday C, Feller G (2003) Activity-stability relationships in extremophilic enzymes. J Biol Chem 278:7891–7896CrossRefGoogle Scholar
  13. Del Vecchio P, Elias M, Merone L, Graziano G, Dupuy J, Mandrich L, Carullo P, Fournier B, Rochu D, Rossi M, Masson P, Chabriere E, Manco G (2009) Structural determinants of the high thermal stability of SsoPox from the hyperthermophilic archaeon Sulfolobus solfataricus. Extremophiles 13:461–470CrossRefGoogle Scholar
  14. Deming JW (2007) Life in ice formation at very low temperatures. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, pp 133–144Google Scholar
  15. Ditzel L, Löwe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S (1998) Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93:125–138CrossRefGoogle Scholar
  16. Feller G (2010) Protein stability and enzyme activity at extreme biological temperatures. J Phys Condens Matter 22:32101–321018CrossRefGoogle Scholar
  17. Ferbitz L, Maier T, Patzelt H, Bukau B, Deurling E, Ban N (2004) Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431:590–596CrossRefGoogle Scholar
  18. Garcia-Viloca M, Gao J, Karplus L, Truhlar DG (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186–195CrossRefGoogle Scholar
  19. Georlette D, Damien B, Blaise V, Depierreux E, Uversky VN, Gerday C, Feller G (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic and thermophilic DNA ligases. J Biol Chem 278:37015–37023CrossRefGoogle Scholar
  20. Gerday C (2011) Life at the extreme of temperature. In: Storz G, Hengge R (eds) Bacterial stress response. ASM Press, Washington, pp 425–444Google Scholar
  21. Gilichinski D, Vishnivetskaya M, Petrova M, Spirina E, Mamykin V, Rivkina E (2007) Bacteria in permafrost. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer-Verlag, Berlin, pp 83–102Google Scholar
  22. Goodchild A, Saunders NF, Erlan H, Raftery M, Guilhaus M, Curmi PM, Cavicchioli R (2004) A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53:309–321CrossRefGoogle Scholar
  23. Hoffmann A, Bukau B, Kramer G (2010) Structure and function of the molecular chaperone, trigger factor. Biochim Biophys Acta 1803:650–661CrossRefGoogle Scholar
  24. Huo Y, Hu Z, Zhang K, Wang L, Zhai Y, Zhou Q, Lander G, Zhu J, He Y, Pang X, Xu W, Bartlam M, Don Z, Sun F (2010) Crystal structure of group II chaperonin in the open state. Structure 18:1270–1279CrossRefGoogle Scholar
  25. Kandror O, Goldberg AL (1997) Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci U S A 94:4978–4981CrossRefGoogle Scholar
  26. Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934CrossRefGoogle Scholar
  27. Kawamoto J, Kurihara T, Kitagawa M, Kato I, Esaki N (2007) proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis Ac 10, for global identification of cold-inducible proteins. Extremophiles 10:819–826CrossRefGoogle Scholar
  28. Kumar S, Tsai C-J, Nussinov R (2002) Maximal stabilities of reversible two-state proteins. Biochemistry 41:5359–5374CrossRefGoogle Scholar
  29. Li WF, Zhou PL (2005) Structural features of thermozymes. Biotechnol Adv 23:271–281CrossRefGoogle Scholar
  30. Liu CP, Perrett S, Zhou JM (2005) Dimeric trigger factor stably binds folding-competent intermediates and cooperates with the DnaK-DnaJ-GrpE chaperone system to allow refolding. J Biol Chem 280:13315–13320CrossRefGoogle Scholar
  31. Liu CP, Zhou QM, Fan DJ, Zhou JM (2010) PPIase domain of trigger factor acts as auxiliary chaperone site to assist the folding of protein substrates bound to the crevice of trigger factor. Int J Biochem Cell Biol 42:890–901CrossRefGoogle Scholar
  32. Lonhienne T, Gerday C, Feller G (2001) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543:1–10CrossRefGoogle Scholar
  33. Luke KA, Higgins CL, Wittung-Stafshede P (2007) Thermodynamic stability and folding of proteins from hyperthermophilic organisms. FEBS J 274:4023–4033CrossRefGoogle Scholar
  34. Margesin R (2009) Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13:257–262CrossRefGoogle Scholar
  35. Martinez-Hackert E, Hendrickson WA (2007) Structure of and interactions between domains of trigger factor from Thermotoga maritima. Acta Crystallogr Sect D63:536–547Google Scholar
  36. Martinez-Hackert E, Hendrickson WA (2009) Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell 138:923–934CrossRefGoogle Scholar
  37. Marx J-C, Collins T, D’Amico S, Feller G, Gerday C (2006) Cold-adapted enzymes from marine Antarctic microorganisms. Mar Biotechnol 9:293–304CrossRefGoogle Scholar
  38. Meng G, Xia-Yu X, Xian-Ming P (2008) Salt bridges in the hyperthermophilic protei Ssh10b are resilient to temperature increases. J Biol Chem 283:31690–31696CrossRefGoogle Scholar
  39. Nakamura A, Takumi K, Miki K (2010) Crystal structure of a thermophilic GrpE protein: insight into thermosensing function for the DnaK chaperone system. J Mol Biol 396:1000–1011CrossRefGoogle Scholar
  40. Okada J, Okamoto T, Mukaiyama A, Tadokoro T, You D-J, Chon H, Koga Y, Takano K, Kanaya S (2010) Evolution and thermodynamics of the slow unfolding of hyperstable monomeric proteins. BMC Evol Biol 10:207–218CrossRefGoogle Scholar
  41. Piette F, D’Amico S, Struvay C, Mazzuchelli G, Renaut J, Tutino ML, Danchin A, Leprince P, Feller G (2010) Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. Mol Microbiol 76:120–132CrossRefGoogle Scholar
  42. Piette F, D’Amico S, Mazzucchelli G, Danchin A, Leprince P, Feller G (2011b) Life in the cold: a proteomic study of cold-repressed proteins in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol 77:3881–3883CrossRefGoogle Scholar
  43. Piette F, Struvay C, Feller G (2011a) The protein folding challenge in psychrophiles: facts and current issues. Environ Microbiol 13:1924–1933 CrossRefGoogle Scholar
  44. Popp SL, Reinstein J (2009) Functional characterization of the DnaK chaperone system from the archaeon Methanothermobacter thermoautrophicus ΔH. FEBS Lett 583:573–578CrossRefGoogle Scholar
  45. Priyakumar UD, Ramakrishna S, Nagarjuna KR, Reddy SK (2010) Structural and energetic determinants of thermal stability and hierarchical unfolding pathways of hyperthermophilic proteins, Sac7d and Sso7d. J Phys Chem B 114:1707–1718CrossRefGoogle Scholar
  46. Qiu Y, Kathariou S, Lubman DM (2006) Proteomic analysis of cold adaptation in a Siberian permafrost bacterium Exiguobacterium sibiricum 255–15 by two-dimensional liquid separation coupled with mass spectrometry. Proteomics 6:5221–5233CrossRefGoogle Scholar
  47. Razvi A, Scholtz JM (2006) Lessons in stability from thermophilic proteins. Protein Sci 15:1569–1578CrossRefGoogle Scholar
  48. Rodrigues DF, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC Genomics 9:547CrossRefGoogle Scholar
  49. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102CrossRefGoogle Scholar
  50. Sawle L, Ghosh K (2011) How do thermophilic proteins and proteosomes withstand high temperature? Biophys J 101:217–227CrossRefGoogle Scholar
  51. Schlee S, Reinstein J (2002) The DnaK/ClpB chaperone system from Thermus thermophilus. Cell Mol Life Sci 59:1598–1606CrossRefGoogle Scholar
  52. Smalås AO, Leiros HK, Os V, Willassen NP (2000) Cold adapted enzymes. Biotechnol Annu Rev 6:1–57CrossRefGoogle Scholar
  53. Sonan GK, Receveur-Bréchot V, Duez C, Aghajari N, Czjzek M, Haser R, Gerday C (2007) The linker region plays a key role in the adaptation to cold of the cellulose from an Antarctic bacterium. Biochem J 407:293–302CrossRefGoogle Scholar
  54. Suzuki Y, Haruki M, Takano K, Morikawa M, Kanaya S (2004) Possible involvement of an FKBP family member protein from a psychrotrophic bacterium, Shewanella sp. SIB1 in cold adaptation. Eur J Biochem 271:1372–1381CrossRefGoogle Scholar
  55. Tartaglia GG, Dobson CM, Hartl FU, Vendruscolo M (2010) Physicochemical determinants of chaperone requirements. J Mol Biol 400:579–588CrossRefGoogle Scholar
  56. Techtmann SM, Robb FT (2010) Archaeal-like chaperonins in bacteria. Proc Natl Acad Sci U S A 107:20269–20274CrossRefGoogle Scholar
  57. Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R (2010) Cold adaptation in the marine bacterium, Shingopyxis alaskensis assessed using quantitative proteomics. Environ Microbiol 12:2658–2676Google Scholar
  58. Tsigos I, Velonia K, Smonou I, Bouriotis V (1998) Purification and characterization of an alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE 123. Eur J Biochem 254:356–362CrossRefGoogle Scholar
  59. Van de Vossenberg JL, Ubbink-Kok T, Elferink MG, Driessen AJ, Konings WN (1995) Ion permeability of the cytoplasmic membrane limits the maximum growth temperatures of bacteria and archaea. Mol Microbiol 18:925–932CrossRefGoogle Scholar
  60. Vemparala S, Mehrotra S, Balaram H (2011) Role of loop dynamics in thermal stability of mesophilic and thermophilic adenylsuccinate synthetase: a molecular dynamics and normal mode analysis study. Biochim Biophys Acta 1814:630–637CrossRefGoogle Scholar
  61. Vieille C, Zeikus G (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43CrossRefGoogle Scholar
  62. Xie B-B, Bian F, Chen X-L, He H-L, Guo J, Gao X, Zeng Y-X, Chen B, Zhou B-C, Zhang Y-Z (2009) Cold adaptation of zinc metalloprotease in the thermolysin family from deep sea and Arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics. J Biol Chem 284:9257–9269CrossRefGoogle Scholar
  63. Yébenes H, Mesa P, Munoz IG, Montoya G, Valpuesta JM (2011) Chaperonins: two rings for folding. Trends Biochem Sci 36:424–432CrossRefGoogle Scholar
  64. Zecchinon L, Oriol A, Netzel U, Svennberg J, Gerardin-Otthiers N, Feller G (2005) Stability domains, substrate-induced conformational changes and hinge-bending motions in a psychrophilic phosphoglycerate kinase. A microcalorimetric study. J Biol Chem 280:1307–41314CrossRefGoogle Scholar
  65. Zhang J, Baker ML, Schröder GF, Douglas NR, Reissman S, Jakane J, Dougherty M, Fuc J, Levitt M, Ludtke SJ, Frydman J, Chiu W (2010) Mechanisms of folding chamber closure in a group II chaperonin. Nature 463:379–383CrossRefGoogle Scholar
  66. Zheng S, Ponder MA, Shih JY, Yiedje JM, Thomashow MF, Lubman DM (2007) A proteomic analysis of Psychrobacter arcticus 273–4 adaptation to low temperature and salinity using a 2-D liquid mapping approach. Electrophoresis 28:467–488CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratory of BiochemistryUniversity of Liège, Institute of ChemistryLiègeBelgium

Personalised recommendations