Southern Ocean Evolution in a Global Context: A Molecular Viewpoint

Chapter
Part of the From Pole to Pole book series (POLE)

Abstract

Molecular data can be used to pinpoint both contemporary and historical forces acting on biota but until recently such data have been largely obtained only from vertebrates, such as penguins (Baker et al. 2006), fish (Kuhn and Gaffney 2006; Rogers et al. 2006), and seals (Curtis et al. 2009), whose mobile adult stages are less affected by the barriers imposed by abiotic forces than are invertebrates. Exceptions include research focused on commercially important pelagic taxa, primarily krill (Goodall-Copestake et al. 2010; Batta-Lona et al. 2011). The few early studies on benthic invertebrates indicated the potential use of molecular data in interpretation of Antarctic speciation and connectivity by providing evidence of limited gene flow (Allcock et al. 1997), endemic radiation (Held 2000), cryptic speciation (Held 2003) and historical connectivity between the Antarctic and other oceans (Lörz and Held 2004).

Keywords

Southern Ocean Polar Front Antarctic Circumpolar Current Drake Passage Brittle Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This is a contribution to the SCAR EBA programme.

References

  1. Allcock AL, Brierley AS, Thorpe JP, Rodhouse PG (1997) Restricted geneflow and evolutionary divergence between geographically separated populations of the Antarctic octopus Pareledone turqueti. Mar Biol 129:97–102CrossRefGoogle Scholar
  2. Allcock AL, Barratt I, Eléaume M, Linse K, Norman MD, Smith PJ, Steinke D, Stevens DW, Strugnell JM (2011) Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep-Sea Res II 58:242–249CrossRefGoogle Scholar
  3. Arango CP, Soler-Membrives A, Miller K (2011) Genetic differentiation in the circum—Antarctic sea spider Nymphon australe (Pycnogonida; Nymphonidae). Deep-Sea Res II 58:212–219CrossRefGoogle Scholar
  4. Baird HP, Miller KJ, Stark JS (2011) Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antarctic amphipods. Mol Ecol 20:3439–3454CrossRefGoogle Scholar
  5. Baker AJ, Pereira SL, Haddrath OP, Edge KA (2006) Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling. Proc R Soc B 273:11–17CrossRefGoogle Scholar
  6. Barnes DKA, Clarke A (2011) Antarctic marine biology. Current Biol R451–R457Google Scholar
  7. Batta-Lona PG, Bucklin A, Wiebe PH, Copley NJ, Patarnello T (2011) Population genetic variation of the Southern Ocean krill, Euphausia superba, in the Western Antarctic Peninsula region based on mitochondrial single nucleotide polymorphisms (SNPs). Deep-Sea Res II 58:1652–1661CrossRefGoogle Scholar
  8. Bortolotto E, Bucklin A, Mezzavilla M, Zane L, Patarnello T (2011) Gone with the currents: lack of genetic differentiation at the circum-continental scale in the Antarctic krill Euphausia superba. BMC Genet 12:32CrossRefGoogle Scholar
  9. Brandão SN, Suger J, Schon I (2010) Circum antarctic distribution in Southern Ocean benthos? A genetic test using the genus Macroscapha (Crustacea, Ostracoda) as a model. Mol Phylogenet Evol 55:1055–1069CrossRefGoogle Scholar
  10. Brandt A, de Broyer C, de Mesel I, Elinsen KE, Gooday AJ, Hilbig B, Linse K, Thomson MRA, Tyler PA (2007a) The biodiversity of the deep Southern Ocean benthos. Phil Trans R Soc B 362:39–66CrossRefGoogle Scholar
  11. Brandt A, Brökeland W, Choudhury M, Brix S, Kaiser S, Malyutina M (2007b) Deep-sea isopod biodiversity, abundance, and endemism in the Atlantic sector of the Southern Ocean—results from the ANDEEP I-III expeditions. Deep-Sea Res II 54:1760–1775CrossRefGoogle Scholar
  12. Brey T, Dahm C, Gorny M, Klages M, Stiller M, Arntz WE (1996) Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarctic Sci 8:3–6CrossRefGoogle Scholar
  13. Browne WE, Haddock SHD, Martindale MQ (2007) Phylogenetic analysis of lineage relationships among hyperiid amphipods as revealed by examination of the mitochondrial gene, cytochrome oxidase I (COI). Int Comp Biol 47:815–830CrossRefGoogle Scholar
  14. Clarke A (2008) Antarctic marine benthic diversity: patterns and processes. J Exp Mar Biol Ecol 366:48–55CrossRefGoogle Scholar
  15. Clarke A, Arntz WE (2006) An introduction to EASIZ (Ecology of the Antarctic Sea Ice Zone): an integrated programme of water column, benthos and bentho-pelagic coupling in the coastal environment of Antarctica. Deep-Sea Res II 53:803–814CrossRefGoogle Scholar
  16. Clarke A, Crame JA (2010) Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas. Phil Trans R Soc B 365:3655–3666CrossRefGoogle Scholar
  17. Clarke A, Johnston N (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Ann Rev 41:47–114Google Scholar
  18. Curtis C, Stewart BS, Karl SA (2009) Pleistocene population expansions of Antarctic seals. Mol Ecol 18:2112–2121CrossRefGoogle Scholar
  19. Darling KF, Wade CM (2008) The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Mar Micropaleontol 67:216–238CrossRefGoogle Scholar
  20. Darling KF, Kucera M, Pudsey CJ, Wade CM (2004) Molecular evidence links cryptic diversification in polar planktonic protests to Quaternary climate dynamics. Proc Nat Acad Sci 101:7657–7662CrossRefGoogle Scholar
  21. DeBroyer C, Danis B (2011) How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species. Deep-Sea Res II 58:5–17CrossRefGoogle Scholar
  22. Dell RK (1972) Antarctic benthos. Adv Mar Biol 10:1–216CrossRefGoogle Scholar
  23. Diaz A, Féral JP, Saucède T, Poulin E (2011) Evolutionary pathways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean. Deep-Sea Res II 58:205–211CrossRefGoogle Scholar
  24. Diekman B, Kuhn G, Gersonde G, Mackensen R (2004) Middle Eocene to early miocene environmental changes in the sub-Antarctic Southern ocean: evidence from biogenic and terrigenous patterns at ODP site 1090. Global Planet Change 40:295–313CrossRefGoogle Scholar
  25. EPICA (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628CrossRefGoogle Scholar
  26. Fraser CI, Nikula R, Ruzzante DE, Waters JM (2010) Multigene phylogeny of the southern bull-kelp genus Durvillaea (Phaeophyceae: Fucales). Mol Phylogenet Evol 57:1301–1311CrossRefGoogle Scholar
  27. Göbbeler K, Klussmann-Kolb A (2010) Out of Antarctica?—new insights into the phylogeny and biogeography of the Pleurobranchomorpha (Mollusca, Gastropoda). Mol Phylogenet Evol 55:996–1007CrossRefGoogle Scholar
  28. González-Wevar CA, Nakano T, Cañete JI, Poulin E (2010) Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean. Mol Phylogenet Evol 56:115–124CrossRefGoogle Scholar
  29. González-Wevar CA, David B, Poulin E (2011) Phylogeography and demographic inference in Nacella (Patinigera) concinna (Strebel, 1908) in the western Antarctic Peninsula. Deep-Sea Res II 58:220–229CrossRefGoogle Scholar
  30. Goodall-Copestake WP, Perez-Espona S, Clark MS, Murphy EJ, Seear PJ, Tarling GA (2010) Swarms of diversity at the gene cox1 in Antarctic krill. Heredity 104:513–518CrossRefGoogle Scholar
  31. Griffiths HJ, Barnes DKA, Linse K (2009) Towards a generalized biogeography of the Southern Ocean benthos. J Biogeog 36:162–177CrossRefGoogle Scholar
  32. Havermans C, Nagy ZT, Sonet G, De Broyer C, Martin P (2011) DNA barcoding reveals new insights into the diversity of Antarctic species of Orchomene sensu lato (Crustacea: Amphipoda: Lysianassoidea). Deep-Sea Res II 58:230–241CrossRefGoogle Scholar
  33. Heiemeyer D, Lavery S, Sewell MA (2010) Molecular species identification of Astrotoma agassizii from planktonic embryos: further evidence for a cryptic species complex. J Hered 101:775–779CrossRefGoogle Scholar
  34. Held C (2000) Phylogeny and biogeography of serolid isopods (Crustacea, Isopoda, Serolidae) and the use of ribosomal expansion segments in molecular systematics. Mol Phylogenet Evol 15:165–178CrossRefGoogle Scholar
  35. Held C (2001) No evidence for slow-down of molecular substitution rates at subzero temperatures in Antarctic serolid isopods Crustacea, Isopoda, Serolidae). Polar Biol 24:497–501CrossRefGoogle Scholar
  36. Held C (2003) Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context, Backhuys, pp. 135–139Google Scholar
  37. Held C, Leese F (2007) The utility of fast evolving molecular markers for studying speciation in the Antarctic benthos. Polar Biol 30:513–521CrossRefGoogle Scholar
  38. Hemery LG, Eléaume M, Roussel V, Améziane N, Gallut C, Steinke D, Cruaud C, Couloux A, Wilson NG (2012) Comprehensive sampling reveals circumpolarity and sympatry in seven mitochondrial lineages of the Southern Ocean crinoid species Promachocrinus kerguelensis (Echinodermata). Mol Ecol 21:2505–2518CrossRefGoogle Scholar
  39. Hoffman JI, Clarke A, Linse K, Peck LS (2011) Effects of brooding and broadcasting reproductive modes on the population genetic structure of two Antarctic gastropod molluscs. Mar Biol 158:287–296CrossRefGoogle Scholar
  40. Hunt B, Strugnell J, Bednarsek N, Linse K, Nelson RJ, Pakhomov E, Seibel B, Steinke D, Würzberg L (2010) Poles apart: the bipola pteropod species Limacina helicina is genetically distinct between the Arctic and Antarctic Oceans. PLoS ONE 5:e9835CrossRefGoogle Scholar
  41. Hunter RL, Halanych KM (2008) Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the drake passage in the Southern Ocean. J Hered 99:137–148CrossRefGoogle Scholar
  42. Janko K, Lecointre G, DeVries A, Couloux A, Cruaud C, Marshall C (2007) Did glacial advances during the Pleistocene influence differently the demographic histories of benthic and pelagic Antarctic shelf fishes?—Inferences from intraspecific mitochondrial and nuclear DNA sequence diversity. BMC Evol Biol 7:220CrossRefGoogle Scholar
  43. Janko K, Marshall C, Musilová Z, Van Houdt J, Couloux A, Cruaud C, Lecointre G (2011) Multilocus analyses of an Antarctic fish species flock (Teleostei, Notothenioidei, Trematominae): phylogenetic approach and test of the early-radiation event. Mol Phylogenet Evol 60:305–316CrossRefGoogle Scholar
  44. Janosik AM, Mahon AR, Halanych KM (2011) Evolutionary history of Southern Ocean Odontaster sea star species (Odontasteridae; Asteroidea). Polar Biol 34:575–586CrossRefGoogle Scholar
  45. Krabbe K, Leese F, Mayer C, Tollrain R, Held C (2010) Cryptic mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx Hoek, 1881 from Antarctic and Subantarctic waters. Polar Biol 33:281–292CrossRefGoogle Scholar
  46. Kuhn KL, Gaffney PM (2006) Preliminary assessment of population structure in the mackerel icefish (Champsocephalus gunnari). Polar Biol 29:927–935CrossRefGoogle Scholar
  47. Kuklinski P, Barnes DKA (2010) First bipolar brooder. Mar Ecol Prog Ser 401:15–20CrossRefGoogle Scholar
  48. Lambert DM, Ritchie PA, Millar CD, Holland B, Drummond AJ, Baroni C (2002) Rates of evolution in ancient DNA from Adélie penguins. Science 295:2270–2273CrossRefGoogle Scholar
  49. Lawver LA, Gahagan LM (2003) Evolution of cenozoic seaways in the circum-Antarctic region. Palaeogeog Palaeoclim Palaeoecol 198:11–37CrossRefGoogle Scholar
  50. Lee Y-H, Song M, Lee S, Leon R, Godoy SO, Canete I (2004) Molecular phylogeny and divergence time of the Antarctic sea urchin (Sterechinus neumayeri) in relation to the South American sea urchins. Antarct Sci 16:29–36CrossRefGoogle Scholar
  51. Leese F, Held C (2008) Identification and characterization of microsatellites from the Antarctic isopod Ceratoserolis trilobitoides: nuclear evidence for cryptic species. Conserv Genet 9:1369–1372CrossRefGoogle Scholar
  52. Leese F, Agrawal S, Held C (2010) Long-distance island hopping without dispersal stages: transportation across major zoogeographic barriers in a Southern Ocean isopod. Naturwissensch 97:583–594CrossRefGoogle Scholar
  53. Linse K, Cope T, Lörz AN, Sands C (2007) Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae). Polar Biol 30:1059–1068CrossRefGoogle Scholar
  54. Lörz A-N, Held C (2004) A preliminary molecular and morphological phylogeny of the Antarctic Epimeriidae and Iphimediidae (Crustacea, Amphipoda). Mol Phylogenet Evol 31:4–15CrossRefGoogle Scholar
  55. Lörz AN, Maas E, Linse K, Coleman CO (2009) Do circum-Antarctic species exist in peracarid Amphipoda? A case study in the genus Epimeria Costa, 1851 (Crustacea, Peracarida, Epimeriidae). ZooKeys 18:91–128Google Scholar
  56. Mah C, Foltz D (2011) Molecular phylogeny of the Forcipulatacea (Asteroidea: Echinodermata): systematics and biogeography. Zool J Linn Soc 162:646–660CrossRefGoogle Scholar
  57. Mahon AR, Thornhill DJ, Norenburg J, Halanych KM (2010) DNA uncovers Antarctic nemertean biodiversity and exposes a decades-old cold case of asymmetric inventory. Polar Biol 33:193–202CrossRefGoogle Scholar
  58. Matschiner M, Hanel R, Salzburger W (2009) Gene flow by larval dispersal in the Antarctic nototheniod fish Gobionotothen gibberifrons. Mol Ecol 18:2574–2587CrossRefGoogle Scholar
  59. Naish T, Powell R, Levy R, Wilson G, Scherer R, Talarico F, Krissek L, Niessen F, Pompilio M, Wilson T, Carter L, DeConto R, Huybers P, McKay R, Pollard D, Ross J, Winter D, Barrett P, Browne G, Cody R, Cowan E, Crampton J, Dunbar G, Dunbar N, Florindo F, Gebhardt C, Graham I, Hannah M, Hansaraj D, Harwood D, Helling D, Henrys S, Hinnov L, Kuhn G, Kyle P, Läufer A, Maffioli P, Magens D, Mandernack K, McIntosh W, Millan C, Morin R, Ohneiser C, Paulsen T, Persico D, Raine I, Reed J, Riesselman C, Sagnotti L, Schmitt D, Sjunneskog C, Strong P, Taviani M, Vogel S, Wilch T, Williams T (2009) Obliquity-paced pliocene West Antarctic ice sheet oscillations. Nature 458:322–328CrossRefGoogle Scholar
  60. Near TJ (2004) Estimating divergence times of notothenioid fishes using a fossil-calibrated molecular clock. Antarct Sci 16:37–44CrossRefGoogle Scholar
  61. Nikula R, Fraser CI, Spencer HG, Waters JM (2010) Circumpolar dispersal by rafting in two subantarctic kelp-dwelling crustaceans. Mar Ecol Prog Ser 405:221–230CrossRefGoogle Scholar
  62. O’Loughlin PM, Paulay G, Davey N, Michonneau F (2011) The Antarctic region as a marine biodiversity hotspot for echinoderms: diversity and diversification of sea cucumbers. Deep-Sea Res II 58:264–275CrossRefGoogle Scholar
  63. Page TJ, Linse K (2000) More evidence of speciation and dispersal across the Antarctic polar front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biol 25:818–826Google Scholar
  64. Park ET, Ferrari FD (2009) Species diversity and distributions of pelagic calanoid copepods (Crustacea) from the Southern Ocean. In: Krupnik I, Lang MA, Miller E (eds) Smithsonian at the poles: contributions to international polar year science, pp 143–180, Smithsonian Institution Press, WashingtonGoogle Scholar
  65. Pawlowski J, Fahrni J, Lecroq B, Longet D, Cornelius N, Excoffier L, Cedhagen T, Gooday AJ (2007) Bipolar gene flow in deep-sea benthic foraminifera. Mol Ecol 16:4089–4096CrossRefGoogle Scholar
  66. Pearse JS, Mooi R, Lockhart SJ, Brandt A (2009) Brooding and species diversity in the Southern Ocean: selection for brooders or speciation within brooding clades? In: Krupnik I, Krupnik I, Lang MA, Miller E (eds) Smithsonian at the poles: contributions to international polar year science, pp 181–196. Smithsonian Institution Press, WashingtonGoogle Scholar
  67. Pfuhl HA, McCave NI (2007) Evidence for late Oligocene establishment of the Antarctic circumpolar current. Earth Planet Sci Lett 235:715–728CrossRefGoogle Scholar
  68. Pollard D, DeConto RM (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458:329–333CrossRefGoogle Scholar
  69. Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55:595–609CrossRefGoogle Scholar
  70. Raupach MJ, Malyutina M, Brandt A, Wägele JW (2007) Molecular data reveal a highly diverse species flock within the munnopsoid deep-sea isopod Betamorpha fusiformis (Barnard, 1920) (Crustacea: Isopoda: Asellota) in the Southern Ocean. Deep-Sea Res II 54:1820–1830CrossRefGoogle Scholar
  71. Raupach MJ, Mayer C, Malyutina M, Wägele JW (2009) Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data. Proc R Soc B 276:799–808CrossRefGoogle Scholar
  72. Raupach MJ, Thatje S, Dambach J, Rehm P, Misof B, Leese F (2010) Genetic homogeneity and circum-Antarctic distribution of two benthic shrimp species of the Southern Ocean, Chorismus antarcticus and Nematocarcinus lanceopes. Mar Biol 157:1783–1797CrossRefGoogle Scholar
  73. Rogers AD, Morley S, Fitzcharles E, Jarvis K, Belchier M (2006) Genetic structure of Patagonian toothfish (Dissostichus eleginoides) populations on the Patagonian Shelf and Atlantic and western Indian Ocean sectors of the Southern Ocean. Mar Biol 149:915–924CrossRefGoogle Scholar
  74. Schueller M (2011) Evidence for a role of bathymetry and emergence in speciation in the genus Glycera (Glyceridae, Polychaeta) from the deep Eastern Weddell Sea. Polar Biol 34:549–564CrossRefGoogle Scholar
  75. Stepanjants SD (2006) A review of bipolarity concepts: history and examples from Radiolaria and Medusozoa (Cnidaria). Mar Biol Res 2:200–241CrossRefGoogle Scholar
  76. Strugnell JM, Rogers AD, Prodöhl PA, Collins MA, Allcock AL (2008) The thermohaline expressway: the Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics 24:853–860CrossRefGoogle Scholar
  77. Strugnell JM, Allcock AL, Watts PC (2009a) A panel of microsatellite loci from two species of octopus, Pareledone turqueti (Joubin, 1905) and Pareledone charcoti (Joubin, 1905). Mol Ecol Res 9:1239–1242CrossRefGoogle Scholar
  78. Strugnell JM, Allcock AL, Watts PC (2009b) Microsatellite loci from the endemic Southern Ocean octopus Adelieledone polymorpha (Robson, 1930). Mol Ecol Res 9:1068–1070CrossRefGoogle Scholar
  79. Strugnell J, Cherel Y, Cooke IR, Gleadall IG, Hochberg FG, Ibanez CM, Jorgensen E, Laptikhovsky VV, Linse K, Norman M, Vecchione M, Voight JR, Allcock AL (2011) The Southern Ocean: source and sink? Deep-Sea Res II 58:196–204CrossRefGoogle Scholar
  80. Strugnell JM, Watts PC, Smith PJ, Allcock AL (2012) Persistent genetic signatures of historic climatic events in an Antarctic octopus. Mol Ecol 21:2775–2785CrossRefGoogle Scholar
  81. Thatje S, Hillenbrand C-D, Larter R (2005) On the origin of Antarctic marine benthic community structure. Trends Ecol Evol 20:534–540CrossRefGoogle Scholar
  82. Thomson MRA (2004) Geological and palaeoenvironmental history of the Scotia Sea region as a basis for biological interpretation. Deep-Sea Res II 51:1467–1487CrossRefGoogle Scholar
  83. Thornhill DJ, Mahon AR, Norenburg JL, Halanych KM (2008) Open-ocean barriers to dispersal: a test case with the Antarctic polar front and the ribbon worm Parbolasia corrugatus (Nemertea: Lineidae). Mol Ecol 17:5104–5117CrossRefGoogle Scholar
  84. Uriz MJ, Gili JM, Orejas C, Perez-Porro AR (2011) Do bipolar distributions exist in marine sponges? Stylocordyla chupachups sp. nv. (Porifera: Hadromerida) from the Weddell Sea (Antarctic), previously reported as S. borealis (Lovén, 1868). Polar Biol 34:243–255CrossRefGoogle Scholar
  85. Vaughan DG, Barnes DKA, Fretwell PT, Bingham RG (2011) Potential seaways across West Antarctica. Geochem Geophys Geosyst 12:Q10004. doi: 10.1029/2011GC003688 CrossRefGoogle Scholar
  86. Wilson NG, Hunter RL, Lockhart SJ, Halanych KM (2007) Multiple lineages and absence of panmixia in the circumpolar crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar Biol 152:895–904CrossRefGoogle Scholar
  87. Wilson NG, Schröld M, Halanych KM (2009) Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelensis (Mollusca, Nudibranchia). Mol Ecol 18:965–984CrossRefGoogle Scholar
  88. Yoder AD, Yang ZH (2000) Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol 17:1081–1090CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityBundooraAustralia
  2. 2.Department of ZoologyRyan Institute, National University of Ireland GalwayGalwayIreland

Personalised recommendations