Advertisement

Polar Monitoring: Seabirds as Sentinels of Marine Ecosystems

  • Céline Le Bohec
  • Jason D. Whittington
  • Yvon Le Maho
Chapter
Part of the From Pole to Pole book series (POLE)

Abstract

The Intergovernmental Panel on Climate Change (IPCC 2007) has highlighted an urgent need to assess how ecosystems respond to climate change. This has placed a large Earth and Life Sciences focus on polar regions, as these areas are so far experiencing the strongest and the most rapid global environmental changes.

Keywords

Antarctic Peninsula Gentoo Penguin King Penguin Seabird Species Emperor Penguin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are very grateful to the Institut Polaire Français–Paul-Emile Victor (IPEV, Programme 137 ECOPHY-ANTAVIA) and the Terres Australes et Antarctiques Françaises (TAAF), the Centre National de la Recherche Scientifique (Programme Zone Atelier de Recherches sur l’Environnement Antarctique et Sub-Antarctique), the Agence Nationale de la Recherche (Programme ANR BLANC 1728-01-PICASO) and the Centre Scientifique de Monaco (LEA-647 BioSensib) for all of their support for long-term data collection and their help in developing Polar Life Observatories. Robot development was supported by the TOTAL corporate Foundation. We also wish to thank H. Ducklow, W. Fraser, J. McClintock and M. Pinkerton for figure permissions.

References

  1. Aebischer NJ, Coulson JC, Colebrook JM (1990) Parallel long-term trends across four marine trophic levels and weather. Nature 347:753–755CrossRefGoogle Scholar
  2. Ahola MP, Laaksonen T, Eeva T, Lehikoinen E (2007) Climate change can alter competitive relationships between resident and migratory birds. J Anim Ecol 76:1045–1052CrossRefGoogle Scholar
  3. Ainley DG, Ballard G, Emslie SD, Fraser WR, Wilson PR, Woehler EJ (2003) Adélie penguins and environmental change. Science 300:429–430CrossRefGoogle Scholar
  4. Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science 310:456–460CrossRefGoogle Scholar
  5. Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156CrossRefGoogle Scholar
  6. Barbraud C, Weimerskirch H (2006) Antarctic birds breed later in response to climate change. Proc Natl Acad Sci U S A 103(16):6248–6251CrossRefGoogle Scholar
  7. Barlow EJ, Daunt F, Wanless S, Alvarez D, Reid JM, Cavers S (2011) Weak large-scale population genetic structure in a philopatric seabird, the European Shag Phalacrocorax aristotelis. Ibis 153:768–778CrossRefGoogle Scholar
  8. Barrett RT, Camphuysen CJ, Anker-Nilssen T, Chardine JW, Furness RW, Garthe S, Hüppop O, Leopold MF, Montevecchi WA, Veit RR (2007) Diet studies of seabirds: a review and recommendations. ICES J Mar Sci 64:1675–1691CrossRefGoogle Scholar
  9. Batten SD, Mackas DL (2009) Shortened duration of the annual Neocalanus plumchrus biomass peak in the Northeast Pacific. Mar Ecol Prog Ser 393:189–198CrossRefGoogle Scholar
  10. Beaugrand G, Kirby RR (2010) Climate, plankton and cod. Glob Change Biol 16:1268–1280CrossRefGoogle Scholar
  11. Beaugrand G, Luczak C, Edwards M (2009) Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob Change Biol 15:1790–1803CrossRefGoogle Scholar
  12. Beaulieu M, Thierry AM, Handrich Y, Le Maho Y, Massemin-Challet S, Ancel A (2010) Adverse effects of instrumentation in incubating Adélie penguins (Pygoscelis adeliae). Polar Biol 33:485–492CrossRefGoogle Scholar
  13. Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  14. Bohonak JA (1999) Dispersal, gene flow, and population structure. Quat Rev Biol 74:21–45CrossRefGoogle Scholar
  15. Bost CA, Le Maho Y (1993) Seabirds as bio-indicators of changing marine ecosystems: new perspectives. Acta Oecol Int J Ecol 14:463–470Google Scholar
  16. Bost CA, Jaeger A, Huin W, Koubbi P, Halsey LG, Handrich Y (2008) Monitoring prey availability via data loggers deployed on seabirds: advances and present limitations. In: Tsukamoto K, Kawamura T, Takeuchi T, Beard TDJ, Kaiser MJ (eds) Fisheries for global welfare and environment. The 5th world fisheries congress, Yokohama, pp 121–137Google Scholar
  17. Bost CA, Cotté C, Bailleul F, Cherel Y, Charrassin JB, Guinet C, Ainley DG, Weimerskirch H (2009) The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J Mar Syst 78:363–376CrossRefGoogle Scholar
  18. Both C, van Turnhout CAM, Bijlsma RG, Siepel H, van Strien AJ, Foppen RPB (2010) Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc R Soc Lond Ser B 277:1259–1266CrossRefGoogle Scholar
  19. Boulinier T, McCoy KD, Yoccoz NG, Gasparini J, Tveraa T (2008) Public information affects breeding dispersal in a colonial bird: kittiwakes cue on neighbours. Biol Lett 4:538–540CrossRefGoogle Scholar
  20. Boyd IL, Murray AWA (2001) Monitoring a marine ecosystem using responses of upper trophic level predators. J Anim Ecol 70:747–760CrossRefGoogle Scholar
  21. Boyd IL, Wanless S, Camphuysen CJ (2006) Top predators in marine ecosystems: their role in monitoring and management. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. Bradley NL, Leopold AC, Ross J, Huffaker W (1999) Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci U S A 96(17):9701–9704CrossRefGoogle Scholar
  23. Bradshaw WE, Holzapfel CM (2006) Evolutionary response to rapid climate change. Science 312:1477–1478CrossRefGoogle Scholar
  24. Brodin A, Olsson O, Clark CW (1998) Modelling the breeding cycle of long-lived birds: why do king penguins try to breed late. Auk 115:767–771CrossRefGoogle Scholar
  25. Brown RGB (1991) Marine birds and climatic warming in the northwest Atlantic. In: Montevecchi WA, Gaston AJ (eds) Studies of high latitude seabirds 1: behavioural, energetic and oceanographic aspects of seabird feeding ecology. Canadian wildlife service occasional paper 68, OttawaGoogle Scholar
  26. Buckley LB, Urban MC, Angilletta MJ, Crozier LG, Rissler LJ, Sears MW (2010) Can mechanism inform species’ distribution models? Ecol Lett 13:1041–1054CrossRefGoogle Scholar
  27. Burg TM, Croxall JP (2004) Global population structure and taxonomy of the wandering albatross species complex. Mol Ecol 13:2345–2355CrossRefGoogle Scholar
  28. Burthe S, Daunt F, Butler A, Elston DA, Frederiksen M, Johns D, Newell M, Thackeray SJ, Wanless S (2012) Phenological trends and trophic mismatch across multiple levels of a North Sea pelagic food web. Mar Ecol Prog Ser 454:119–133CrossRefGoogle Scholar
  29. Cairns DK (1987) Seabirds as indicators of marine food supplies. Biol Ocean 5:261–271Google Scholar
  30. Cairns DK (1992) Population regulation of seabird colonies. In: Power DM (ed) Current ornithology. Dordrecht, Kluwer Academic/Plenum, pp 37–62Google Scholar
  31. Chambers LE, Hughes L, Weston MA (2005) Climate change and its impact on Australia’s avifauna. Emu 105:1–20CrossRefGoogle Scholar
  32. Chapdelaine G, Laporte P, Nettleship DN (1987) Population, productivity and DDT contamination of Northern Gannets at Bonaventure Island, Quebec 1967–1984. Can J Zool 65:2922–2926CrossRefGoogle Scholar
  33. Charmantier A, McCleery RH, Cole LR, Perrins C, Kruuk LEB, Sheldon BC (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320:800–803CrossRefGoogle Scholar
  34. Ciannelli L, Hjermann D, Lehodey P, Ottersen G, Duffy-Anderson J, Stenseth NC (2005) Climate forcing, food web structure and community dynamics in pelagic marine ecosystems. In: Belgrano A (ed) Aquatic food webs: an ecosystem approach. Oxford University Press, Oxford, pp 143–169Google Scholar
  35. Clobert J, Danchin E, Dhondt AA, Nichols JD (2001) Dispersal. Oxford University Press, OxfordGoogle Scholar
  36. Cook JA, Brochmann C, Fedorov V, Talbot SL, Taylor EB, Väinölä R, Hoberg EP, Kholodova M, Magnusson KP (2012) Genetic perspectives on Arctic biodiversity. In Arctic biodiversity assessment. Conservation of Arctic fauna and flora Committee, Copenhagen (in press)Google Scholar
  37. Cotté C, Park YH, Guinet C, Bost CA (2007) Movements of foraging king penguins through marine mesoscale eddies. Proc Roy Soc Lond Ser B 274:2385–2391CrossRefGoogle Scholar
  38. Cotton PA (2003) Avian migration phenology and global climate change. Proc Natl Acad Sci U S A 100:12219–12222CrossRefGoogle Scholar
  39. Coulson JC (2002) Colonial breeding in seabirds. In: Schreiber EA and Burger J (eds) Biology of marine birds 2002. CRC Press, London, pp 87–114Google Scholar
  40. Crawford RJM, Goya E, Roux JP, Zavalaga CB (2006) Comparison of assemblages and some life-history traits of seabirds in the Humboldt and Benguela systems. Afr J Mar Sci 28:553–560CrossRefGoogle Scholar
  41. Crawford RJM, Sabarros PS, Fairweather T, Underhill LG, Wolfaardt AC (2008a) Implications for seabirds off South Africa of a long-term change in the distribution of sardine. Afr J Mar Sci 30:177–184CrossRefGoogle Scholar
  42. Crawford RJM, Tree AJ, Whittington PA, Visagie J, Upfold L, Roxburg KJ, Martin AP, Dyer BM (2008b) Recent distributional changes of seabirds in South Africa: is climate having an impact? Afr J Mar Sci 30:189–193CrossRefGoogle Scholar
  43. Crawford RJM, Altwegg R, Barham BJ, Barham PJ, Durant JM, Dyer BM, Geldenhuys D (2011) Collapse of South Africa’s penguins in the early 21st century. Afr J Mar Sci 33:139–156CrossRefGoogle Scholar
  44. Crick HQP (2004) The impact of climate change on birds. Ibis 146:48–56CrossRefGoogle Scholar
  45. Crick HQP, Dudley C, Glue DE, Thomson DL (1997) UK birds are laying eggs earlier. Nature 388:526CrossRefGoogle Scholar
  46. Croxall JP, Trathan PN, Murphy EJ (2002) Environmental change and Antarctic seabird populations. Science 297:1510–1514CrossRefGoogle Scholar
  47. Cury PM, Shin YJ, Planque B, Durant JM, Fromentin JM, Kramer-Schadt S, Stenseth NC, Travers M, Grimm V (2008) Ecosystem oceanography for global change in fisheries. Trends Ecol Evol 23:338–346CrossRefGoogle Scholar
  48. Cushing DH (1970) Marine ecology and fisheries. Cambridge University Press, CambridgeGoogle Scholar
  49. Cushing DH (1988) The provident sea. Cambridge University Press, CambridgeGoogle Scholar
  50. Dawson A (2008) Control of the annual cycle in birds: endocrine constraints and plasticity in response to ecological variability. Phil Trans R Soc B Biol Sci 363:1621–1633CrossRefGoogle Scholar
  51. Diamond AW, Devlin CM (2003) Seabirds as indicators of changes in marine ecosystems: Ecological monitoring on Machias Seal Island. Environ Monit Assess 88:153–181CrossRefGoogle Scholar
  52. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–37CrossRefGoogle Scholar
  53. Dugger KM, Ballard G, Ainley DG, Barton KJ (2006) Effects of flipper bands on foraging behaviour and survival of Adélie penguins (Pygoscelis adeliae). Auk 123:858–869CrossRefGoogle Scholar
  54. Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Fraser WR (2007) Marine pelagic ecosystems: the West Antarctic Peninsula. Phil Trans R Soc B 362:67–94.CrossRefGoogle Scholar
  55. Durant JM, Hjermann DØ, Ottersen G, Stenseth NC (2007) Climate and the match or mismatch between predator requirements and resource availability. Clim Res 33:271–283CrossRefGoogle Scholar
  56. Durant JM, Hjermann DØ, Frederiksen M, Charrassin JB, Le Maho Y, Sabarros PS, Crawford RJM, Stenseth NC (2009) Pros and cons of using seabirds as ecological indicators. Clim Res 39:115–129CrossRefGoogle Scholar
  57. Egevang C, Stenhouse IJ, Phillips RA, Petersen A, Fox JW, Silk JRD (2010) Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc Natl Acad Sci U S A 107:2078–2081CrossRefGoogle Scholar
  58. Ellegren H, Sheldon BC (2008) Genetic basis of fitness differences in natural populations. Nature 452:169–175CrossRefGoogle Scholar
  59. Emslie SD, Fraser W, Smith RC, Walker W (1998) Abandoned penguin colonies and environmental change in the Palmer Station area, Anvers Island, Antarctic Peninsula. Antarct Sci 10:257–268CrossRefGoogle Scholar
  60. Forchhammer MC, Post E, Stenseth NC (2002) North Atlantic oscillation timing of long- and short-distance migration. J Anim Ecol 71:1002–1014CrossRefGoogle Scholar
  61. Fort J, Porter WP, Grémillet D (2009) Thermodynamic modeling predicts energetic bottleneck for seabirds wintering in the northwest Atlantic. J Exp Biol 212:2483–2490CrossRefGoogle Scholar
  62. Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107CrossRefGoogle Scholar
  63. Franklin IR, Frankham R (1998) How large must populations be to retain evolutionary potential? Anim Conserv 1:69–70CrossRefGoogle Scholar
  64. Fraser WR, Trivelpiece WZ, Ainley DC, Trivelpiece SG (1992) Increases in Antarctic penguin populations: reduced competition with whales or a loss of sea ice due to environmental warming? Polar Biol 11:525–531CrossRefGoogle Scholar
  65. Frederiksen M, Mavor RA, Wanless S (2007) Seabirds as environmental indicators: the advantages of combining data sets. Mar Ecol Prog Ser 352:205–211CrossRefGoogle Scholar
  66. Friesen VL, Burg TM, McCoy KD (2007) Mechanisms of population differentiation in seabirds. Mol Ecol 16:1765–1785CrossRefGoogle Scholar
  67. Furness RW, Camphuysen K (1997) Seabirds as monitors of the marine environment. ICES J Mar Sci 54:726–737CrossRefGoogle Scholar
  68. Furness RW, Greenwood JJD (1993) Birds as monitors of environmental change. Chapman & Hall, LondonCrossRefGoogle Scholar
  69. Gandon S, Michalakis Y (2001) Multiple causes of the evolution of dispersal. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, Oxford, pp 155–167Google Scholar
  70. Gaston AJ, Gilchrist HG, Mallory ML, Smith PA (2009) Changes in seasonal events, peak food availability, and consequent breeding adjustment in a marine bird: a case of progressive mismatching. Condor 111:111–119CrossRefGoogle Scholar
  71. Gauthier-Clerc M, Gendner JP, Ribic CA, Fraser WR, Woehler EJ, Descamps S, Gilly C, Le Bohec C, Le Maho Y (2004) Long-term effects of flipper bands on penguins. Proc R Soc Lond B 271:423–426CrossRefGoogle Scholar
  72. Gendner JP, Gauthier-Clerc M, Le Bohec C, Descamps S, Le Maho Y (2005) A new application for transponders in studying of penguins. J Field Ornithol 76:138–142Google Scholar
  73. Gienapp P, Teplitsky C, Alho J, Mills J, Merila J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178CrossRefGoogle Scholar
  74. Graversen RG, Mauritsen T, Tjernström M, Källen E, Svensson G (2008) Vertical structure of recent Arctic warming. Nature 451:53–56CrossRefGoogle Scholar
  75. Grémillet D, Boulinier T (2009) Spatial ecology and conservation of seabirds facing global climate change: a review. Mar Ecol Prog Ser 391:121–137CrossRefGoogle Scholar
  76. Grémillet D, Charmantier A (2010) Shifts in phenotypic plasticity constrain the value of seabirds as ecological indicators of marine ecosystems. Ecol Appl 20:1498–1503CrossRefGoogle Scholar
  77. Grémillet D, Welcker J, Karnovsky NJ, Walkusz W, Hall ME, Fort J, Brown ZW, Speakman JR, Harding AMA (2012) Little auks buffer the impact of current Arctic climate change. Mar Ecol Prog Ser 454:197–206CrossRefGoogle Scholar
  78. Gross L (2005) As the Antarctic ice pack recedes, a fragile ecosystem hangs in the balance. PLoS Biol 3(4):e127CrossRefGoogle Scholar
  79. Hamer KC, Furness RW, Caldow RWG (1991) The effects of changes in food availability on the breeding ecology of great skuas, Catharacta skua, in Shetland. J Zool 223:175–188CrossRefGoogle Scholar
  80. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci U S A 103:14288CrossRefGoogle Scholar
  81. Heslenfeld P, Enserink EL (2008) OSPAR ecological quality objectives: the utility of health indicators for the North Sea. ICES J Mar Sci 65:1392–1397CrossRefGoogle Scholar
  82. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523CrossRefGoogle Scholar
  83. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavore S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  84. Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature. doi: 10.1038/nature11118 Google Scholar
  85. Huettmann F, Diamond AW (2006) Large-scale effects on the spatial distribution of seabirds in the Northwest Atlantic. Landsc Ecol 21:1089–1108CrossRefGoogle Scholar
  86. Hunt GL, Piatt JF, Erikstadt KE (1990) How do foraging seabirds sample their environment?. Acta XX Congressus Internationalis Ornithologici, Christchurch, pp 2272–2280Google Scholar
  87. IPCC (2007) Climate Change 2007: synthesis report. contribution of Working Groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change (eds Core Writing Team, Pachauri RK, Reisinger A)Google Scholar
  88. Jaeger A, Cherel Y (2011) Isotopic investigation of contemporary and historic changes in penguin trophic niches and carrying capacity of the Southern Indian Ocean. PLoS ONE 6(2):e16484CrossRefGoogle Scholar
  89. Jiguet F, Devictor V, Ottvall R, van Turnhout C, van der Jeugd H, Lindström Å (2010) Bird population trends are linearly affected by climate change along species thermal ranges. Proc R Soc Lond B 277:3601–3608CrossRefGoogle Scholar
  90. Jonzen N, Ergon T, Linden A, Stenseth NC (2007) Introduction to CR Special 17: bird migration and climate. Clim Res 35:1–3CrossRefGoogle Scholar
  91. Jouventin P, Weimerskirch H (1990) Satellite tracking of wandering albatrosses. Nature 343:746–748CrossRefGoogle Scholar
  92. Karnovsky N, Harding AMA, Walkusz W, Kwamniewski S, Goszczko I, Wiktor J Jr, Routti H, Bailey A, McFadden L, Brown Z, Beaugrand G, Grémillet D (2010) Foraging distributions of little auks (Alle alle) across the Greenland Sea: implications of present and future climate change. Mar Ecol Prog Ser 415:283–293CrossRefGoogle Scholar
  93. Kearney M, Shine R, Porter WP (2009) The potential for behavioral thermoregulation to buffer “coldblooded’’ animals against climate warming. Proc Natl Acad Sci U S A 106:3835–3840CrossRefGoogle Scholar
  94. Knight TM, Barfield M, Holt RD (2008) Evolutionary dynamics as a component of stage-structured matrix models: an example using Trillium grandiflorum. Am Nat 172(3):375–392CrossRefGoogle Scholar
  95. La Sorte FA, Jetz W (2010) Avian distributions under climate change: towards improved projections. J Exp Biol 213:862–869CrossRefGoogle Scholar
  96. Laikre L, Nilsson TR, Primmer CR, Ryman N, Allendorf FW (2009) Importance of genetics in the interpretation of favourable conservation status. Cons Biol 23:1378–1381CrossRefGoogle Scholar
  97. Lascelles BG, Langham GM, Ronconi RA, Reid JB (2012) From hotspots to site protection: identifying marine protected areas for seabirds around the globe. Biol Cons. doi: 10.1016/j.biocon.2011.12.008 Google Scholar
  98. Le Bohec C, Durant JM, Gauthier-Clerc M, Stenseth NC, Park YH, Pradel R, Grémillet D, Gendner JP, Le Maho Y (2008) King Penguin population threatened by Southern Ocean warming. Proc Natl Acad Sci U S A 105:2493–2497CrossRefGoogle Scholar
  99. Le Maho Y, Karmann H, Briot D, Handrich Y, Robin JP, Mioskowski E, Cherel Y, Farni J (1992) Stress in birds due to routine handling and a technique to avoid it. Am J Phys 263:775–781Google Scholar
  100. Le Maho Y, Gendner JP, Challet E, Bost CA, Gilles J, Verdon C, Plumeré C, Robin JP, Handrich Y (1993) Undisturbed breeding penguins as indicators of changes in marine resources. Mar Ecol Prog Ser 95:1–6CrossRefGoogle Scholar
  101. Le Maho Y, Saraux C, Durant J, Viblanc VA, Gauthier-Clerc M, Yoccoz N, Stenseth NC, Le Bohec C (2011) An ethical issue on biodiversity science: the monitoring of penguins with flipper-bands. Comp Rend Biol 334:378–384CrossRefGoogle Scholar
  102. Lebreton J, Burnham K, Clobert J, Anderson D (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118CrossRefGoogle Scholar
  103. Litzow MA, Ciannelli L (2007) Oscillating trophic control induces community reorganization in a marine ecosystem. Ecol Lett 10:1124–1134CrossRefGoogle Scholar
  104. Lynch M, Lande R (1998) The critical effective size for a genetically secure population. Anim Conserv 1:70–72CrossRefGoogle Scholar
  105. Matthiopoulos J, Harwood J, Thomas L (2005) Metapopulation consequences of site fidelity for colonially breeding mammals and birds. J Anim Ecol 74:716–727CrossRefGoogle Scholar
  106. McClintock J, Ducklow H, Fraser W (2008) Ecological Responses to climate change on the Antarctic Peninsula. Am Sci 96:302–310CrossRefGoogle Scholar
  107. Milot E, Weimerskirsch H, Bernatchez L (2008) The seabird paradox: dispersal, genetic structure and population dynamics in a highly mobile, but philopatric albatross species. Mol Ecol 17:1658–1673CrossRefGoogle Scholar
  108. Møller AP (2002) North Atlantic Oscillation (NAO) effects of climate on the relative importance of first and second clutches in a migratory passerine bird. J Anim Ecol 71:201–210CrossRefGoogle Scholar
  109. Møller AP, Rubolini D, Lehikoinen E (2008) Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc Natl Acad Sci U S A 105:16195–16200CrossRefGoogle Scholar
  110. Monaghan P (1996) Relevance of the behaviour of seabirds to the conservation of marine environments. Oikos 77:227–237CrossRefGoogle Scholar
  111. Monteiro LR, Furness RW (1995) Seabirds as monitors of mercury in the marine environment. Water Air Soil Pollut 80:851–870CrossRefGoogle Scholar
  112. Montevecchi WA (1993) Birds as indicators of change in marine prey stocks. In: Furness RW, Greenwood JJD (eds) Birds as monitors of environmental change. Chapman and Hall, London, pp 217–266CrossRefGoogle Scholar
  113. Montevecchi WA, Myers RA (1996) Dietary changes of seabirds indicate shifts in pelagic food webs. Sarsia 80:313–322Google Scholar
  114. Montevecchi WA, Myers RA (1997) Centurial and decadal oceanographic influences on changes in northern gannet populations and diets in the north-west Atlantic: implications for climate change. ICES J Mar Sci 54:608–614CrossRefGoogle Scholar
  115. Morin X, Thuiller W (2009) Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90:1301–1313CrossRefGoogle Scholar
  116. Nussey DH, Clutton-Brock T, Elston DA, Albon SD, Kruuk LEB (2005) Phenotypic plasticity in a maternal trait in red deer. J Anim Ecol 74:387–396CrossRefGoogle Scholar
  117. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefGoogle Scholar
  118. Parry ML et al (2007) Climate change 2007: impacts, adaptation and vulnerability. Summary for Policymakers (a report of Working Group II of the intergovernmental panel on climate change) and technical summary (a report accepted by Working Group II of the IPCC but not yet approved in detail: part of the Working Group II contribution to the fourth assessment report of the intergovernmental panel on climate change)Google Scholar
  119. Péron C, Weimerskirch H, Bost CA (2012) Projected poleward shift of king penguins’ (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean. Proc R Soc Lond B 279:2515–2523CrossRefGoogle Scholar
  120. Perrings C, Naeem S, Ahrestani FS, Bunker DE, Burkill P, Canziani G, Elmqvist T, Fuhrman JA, Jaksic FM, Kawabata Z, Kinzig A, Mace GM, Mooney H, Prieur-Richard AH, Tschirhart J, Weisser W (2011) Ecosystem services, targets, and indicators for the conservation and sustainable use of biodiversity. Front Ecol Environ 9:512–520CrossRefGoogle Scholar
  121. Piatt JP, Sydeman WJ, Wiese F (2007) Introduction: a modern role for seabirds as indicators. Mar Ecol Prog Ser 352:199–204CrossRefGoogle Scholar
  122. Pichegru L, Grémillet D, Crawford RJM, Ryan PG (2010) Marine no-take zone rapidly benefits endangered penguin. Biol Lett 6(4):498–501CrossRefGoogle Scholar
  123. Pierroti R, Annett CA (1990) Diet and reproductive output in seabirds. BioScience 40:568–574CrossRefGoogle Scholar
  124. Provencher JF, Gaston AJ, O’Hara PD, Gilchrist HG (2012) Seabird diet indicates changing Arctic marine communities in eastern Canada. Mar Ecol Prog Ser 454:171–182CrossRefGoogle Scholar
  125. Rayner MJ, Hauber ME, Steeves TE, Lawrence HA, Thompson DR, Sagar PM, Bury SJ, Landers TJ, Phillips RA, Ranjard L, Shaffer SA (2011) Contemporary and historical separation of transequatorial migration between genetically distinct seabird populations. Nat Commun 2:332CrossRefGoogle Scholar
  126. Ribic CA, Ainley DG, Ford RG, Fraser WR, Tynan CT, Woehler E (2011) Water masses, ocean fronts, and the structure of Antarctic seabird communities: putting the eastern Bellingshausen Sea in perspective, Deep-Sea Res 2. Top Stud Oceanogr 58:1695–1709CrossRefGoogle Scholar
  127. Roberge JM, Angelstam P (2004) Usefulness of the umbrella species concept as a conservation tool. Conserv Biol 18:76–85CrossRefGoogle Scholar
  128. Roeder AD, Marshall RK, Mitchelson AJ, Visagathilagar T, Ritchie PA, Love DR, Pakai TJ, McPartlan HC, Murray ND, Robinson NA (2001) Gene flow on the ice: genetic differentiation among Adélie penguin colonies around Antarctica. Mol Ecol 10:1645–1656CrossRefGoogle Scholar
  129. Ronconi RA, Lascelles BG, Langham GM, Reid JB, Oro D (2012) The role of seabirds in marine protected area identification, delineation, and monitoring: introduction and synthesis. Biol Conserv. doi: 10.1016/j.biocon.2012.02.016 Google Scholar
  130. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60CrossRefGoogle Scholar
  131. Ropert-Coudert Y, Kato A, Chiaradia A (2009) Impact of small-scale environmental perturbations on local marine food resources: a case study of a predator, the little penguin. Proc R Soc Lond Ser B 276:4105–4109CrossRefGoogle Scholar
  132. Ross KG (2001) Molecular ecology of social behaviour: analyses of breeding systems and genetic structure. Mol Ecol 10:265–284CrossRefGoogle Scholar
  133. Sæther BE, Tufto J, Engen S, Jerstad K, Røstad OW, Skåtan JE (2000) Population dynamical consequences of climate change for a small temperate songbird. Science 287:854–856CrossRefGoogle Scholar
  134. Saraux C, Le Bohec C, Durant JM, Viblanc VA, Gauthier-Clerc M, Beaune D, Park YH, Yoccoz NG, Stenseth NC, Le Maho Y (2011) Reliability of flipper-banded penguins as indicators of climate change. Nature 469:203–206CrossRefGoogle Scholar
  135. Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33CrossRefGoogle Scholar
  136. Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea ice cover. Science 315:1533–1536CrossRefGoogle Scholar
  137. Shultz MT, Piatt JF, Harding AMA, Kettle AB, Van Pelt TI (2009) Timing of breeding and reproductive performance in murres and kittiwakes reflect mismatched seasonal prey dynamics. Mar Ecol Prog Ser 393:247–258CrossRefGoogle Scholar
  138. Smith RC, Ainley D, Kaber K, Domack E, Emslie S, Fraser B, Kennett J, Leventer A, Mosley-Thompson E, Stammerjohn S, Vernet M (1999) Marine ecosystem sensitivity to historical climate change in the Antarctic Peninsula. BioScience 49:393–404CrossRefGoogle Scholar
  139. Spear LB, Ainley DG (1999) Migration routes of sooty shearwaters in the Pacific Ocean. Condor 101:205–218CrossRefGoogle Scholar
  140. Springer AM, Piatt JF, van Vliet G (1996) Sea birds as proxies of marine habitats and food webs in the western Aleutian arc. Fish Oceanogr 5(1):45–55CrossRefGoogle Scholar
  141. Stachowicz JJ, Bruno JF, Duffy JE (2007) Understanding the effects of marine biodiversity on communities and ecosystems. Annu Rev Ecol Evol Syst 38:739–766CrossRefGoogle Scholar
  142. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  143. Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296CrossRefGoogle Scholar
  144. Stenseth NC, Ottersen G, Hurell JW, Belgrano A (2004) Marine ecosystems and climate variation. The North Atlantic: a comparative perspective. Oxford University Press, OxfordGoogle Scholar
  145. Taylor SA, Friesen VL (2012) Use of molecular genetics for understanding seabird evolution, ecology and conservation. Mar Ecol Prog Ser 451:285–304CrossRefGoogle Scholar
  146. Thackeray SJ, Sparks TH, Frederiksen M, Burthe S (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Change Biol 16:3304–3313CrossRefGoogle Scholar
  147. Thompson SA, Sydeman WJ, Santora JA, Morgan KH, Crawford W, Burrows MT (2012) Phenology of pelagic seabird abundance relative to marine climate change in the Alaska Gyre. Mar Ecol Prog Ser 454:159–170CrossRefGoogle Scholar
  148. Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. Proc R Soc Lond Ser B 272:2561–2569CrossRefGoogle Scholar
  149. Visser ME, Both C, Lambrechts MM (2004) Global climate change leads to mistimed avian reproduction. Adv Ecol Res 35:89–110CrossRefGoogle Scholar
  150. Voigt W, Perner J, Davis AJ, Eggers T, Schumacher J, Bährmann R, Fabian B, Heinrich W, Köhler G, Lichter D, Marstaller R, Sander FW (2003) Trophic levels are differentially sensitive to climate. Ecology 84:2444–2453CrossRefGoogle Scholar
  151. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefGoogle Scholar
  152. Weimerskirch H, Stahl JC, Jouventin P (1992) The breeding biology and population dynamics of King Penguin Aptenodytes patagonicus on the Crozet Islands. Ibis 134:107–117CrossRefGoogle Scholar
  153. Weimerskirch H, Louzao M, de Grissac S, Delord K (2012) Changes in wind pattern alter albatross distribution and life-history traits. Science 335:211–214CrossRefGoogle Scholar
  154. Wilson RP, Vandenabeele SP (2012) Technological innovation in archival tags used in seabird research. Mar Ecol Prog Ser 451:245–262CrossRefGoogle Scholar
  155. Wilson PR, Ainley DG, Nur N, Jacobs SS, Barton KJ, Ballard G, Comiso JC (2001) Adélie penguin population change in the pacific sector of Antarctica: relation to sea-ice extent and the Antarctic Circumpolar Current. Mar Ecol Prog Ser 213:301–309CrossRefGoogle Scholar
  156. Wynn RB, Knefelkamp B (2004) Seabird distribution and oceanic upwelling off northwest Africa. British Birds 97:323–335Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Céline Le Bohec
    • 1
    • 2
  • Jason D. Whittington
    • 3
    • 1
    • 2
  • Yvon Le Maho
    • 2
    • 1
  1. 1.European Associated Laboratory 647 ‘BioSensib’ Centre Scientifique de Monaco & Centre National de la Recherche ScientifiqueMonte-CarloPrincipality of Monaco
  2. 2.Institut Pluridisciplinaire Hubert Curien, Unité Mixte de Recherche 7178 Centre National de la Recherche Scientifique & Université de StrasbourgStrasbourg Cedex 02France
  3. 3.Nordic Centre for Research on Marine Ecosystems and Resources under Climate Change (NorMER), Centre for Ecological and Evolutionary Synthesis (CEES), Department of BiologyUniversity of OsloBlindernNorway

Personalised recommendations