Advertisement

Shear Wave Diffusion Observed by Magnetic Resonance Elastography

  • Sebastian Papazoglou
  • Jürgen Braun
  • Dieter Klatt
  • Ingolf Sack
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Dynamic elastography is a noninvasive imaging-based modality for the measurement of viscoelastic constants of living soft tissue. The method employs propagating shear waves to induce elastic deformations inside the target organ. Using magnetic resonance elastography (MRE), components of harmonic shear wave fields can be measured inside gel phantoms or in vivo soft tissues. Soft tissues have heterogeneous elastic properties, giving rise to scattering of propagating shear waves. However, to date little attention has been paid to an analysis of shear wave scattering as a possible means to resolve local elastic heterogeneities in dynamic elastography. In this article we present an analysis of shear wave scattering based on a statistical analysis of shear wave intensity speckles. Experiments on soft gel phantoms with cylindrical glass inclusions are presented where the polarization of the shear wave field was adjusted relative to the orientation of the scatterers. A quantitative analysis of the resulting fields of shear horizontal (SH) waves and shear vertical (SV) waves demonstrates that the distribution of wave intensities in both modes obeys restricted diffusion in a similar order. This observation sets the background for quantification of shear wave scattering in MRE of body tissue where SH and SV wave scattering occur simultaneously.

Keywords

Shear Wave Wave Intensity Rigid Inclusion Shear Horizontal Magnetic Resonance Elastography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Muthupillai, R., Lomas, D.J., Rossman, P.J., Greeenleaf, J.F., Manduca, A., Ehman, R.L.: Magnetic Resonance Elastography by Direct Visualization of Propagating Acoustic Strain Waves. Science. 269, 1854–1857 (1995)Google Scholar
  2. 2.
    Plewes, D.B., Betty, I., Urchuk, S.N., Soutar, I.: Visualizing Tissue Compliance with MR Imaging. J. Magn. Reson. Imaging, 5, 733–738 (1995)Google Scholar
  3. 3.
    Dresner, M.A., Rose, G.H., Rossman, P.J., Muthupillai, R., Manduca, A., Ehman, R.L.: Magnetic resonance elastography of skeletal muscle. J. Magn. Reson. Imaging. 13, 269–276 (2001)Google Scholar
  4. 4.
    Papazoglou, S., Rump, J., Braun, J., Sack, I.: Shear wave group velocity inversion in MR elastography of human skeletal muscle. Magn. Reson. Med. 56, 489–497 (2006)Google Scholar
  5. 5.
    Huwart, L., Sempoux, C., Salameh, N., Jamart, J., Annet, L., Sinkus, R., Peeters, F., ter Beek, L.C., Horsmans, Y., van Beers, B.E.: Liver fibrosis: noninvasive assessment with MR elastography versus aspartate aminotransferase-to-platelet ratio index. Radiology. 245, 458–466 (2007)Google Scholar
  6. 6.
    Yin, M., Talwalkar, J.A., Glaser, K.J., Manduca, A., Grimm, R.C., Rossman, P.J., Fidler, J.L., Ehman, R.L.: Assessment of hepatic fibrosis with magnetic resonance elastography. Clin. Gastroenterol. Hepatol. 5, 1207–1213.e.2. (2007)Google Scholar
  7. 7.
    Sinkus, R., Siegmann, K., Xydeas, T., Tanter, M., Claussen, C., Fink, M.: MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn. Reson. Med. 58, 1135–1145 (2007)Google Scholar
  8. 8.
    Kruse, S.A., Rose, G.H., Glaser, K.J., Manduca, A., Felmlee, J.P., Jack Jr., C.R., Ehman, R.L.: Magnetic resonance elastography of the brain. Neuroimage 39, 231–237 (2008)Google Scholar
  9. 9.
    Sack, I., Beierbach, B., Wuerfel, J., Klatt, D., Hamhaber, U., Papazoglou, S., Martus, P., Braun, J.: The impact of aging and gender on brain viscoelasticity. Neuroimage 46, 652–657 (2009)Google Scholar
  10. 10.
    Elgeti, T., Rump, J., Hamhaber, U., Papazoglou, S., Hamm, B., Braun, J., Sack, I.: Cardiac magnetic resonance elastography. Initial results. Invest. Radiol. 43, 762–772 (2008)Google Scholar
  11. 11.
    Park, E., Maniatty, A.M.: Shear modulus reconstruction in dynamic elastography: time harmonic case. Phys. Med. Biol. 51(1), 3697–3721 (2006)Google Scholar
  12. 12.
    Barbone, P.E., Gokhale, N.H.: Elastic modulus imaging: on the uniqueness and nonuniqueness of the elastography inverse problem in two dimensions. Journal: Inverse Problems not PMB (!). Phys. Med. Biol. 20, 283–296 (2004)Google Scholar
  13. 13.
    Papazoglou, S., Hamhaber, U., Braun, J., Sack, I.: Algebraic Helmholtz inversion in planar magnetic resonance elastography. Phys. Med. Biol. 53, 3147–3158 (2008)Google Scholar
  14. 14.
    Sheng, P.: Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. In: Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. Springer, Berlin (2006)Google Scholar
  15. 15.
    Papazoglou, S., Xu, C., Hamhaber, U., Siebert, E., Bohner, G., Klingebiel, R., Braun, J., Sack, I.: Scatter-based magnetic resonance elastography. Phys. Med. Biol. 54, 2229–2241 (2009)Google Scholar
  16. 16.
    Lagendijk, Ad., van Tiggelen B.A.: Resonant multiple scattering of light. Phys. Rep. 270, 143–215 (1996)Google Scholar
  17. 17.
    van Rossum, M.C.W., Nieuwenhuizen, Th.M.: Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion. Rev. Mod. Phys. 71, 313–371 (1999)Google Scholar
  18. 18.
    Zhang, Z.Q., Jones, I.P., Schriemer, H.P., Page, J.H., Weitz, D.A., Sheng, P.: Group Velocity in Strongly Scattering Media. Phys. Rev. E. 60, 4843–4850 (1999)Google Scholar
  19. 19.
    Tourin, A., Fink, M., Derode, A.: Multiple scattering of sound. Waves Random Media. 10, R31–R60 (2000)Google Scholar
  20. 20.
    Aki, K., Richards, P.G.: Quantitative Seismology. In: Quantitative Seismology. University Science Books, Sausalito (2002)Google Scholar
  21. 21.
    Nieuwenhuizen, Th.M., van Rossum, M.C.W.: Intensity Distributions of Waves Transmitted through a Multiple Scattering Medium. Phys. Rev. Lett. 74, 2674–2677 (1995)Google Scholar
  22. 22.
    van Tiggelen B.A.: In: Fouque, J.P. (ed.) Diffusive Waves in Complex Media. Kluwer Academic, Dordrecht (1999)Google Scholar
  23. 23.
    Klatt, D., Hamhaber, U., Asbach, P., Braun, J., Sack, I.: Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys. Med. Biol. 52, 7281–7294 (2007)Google Scholar
  24. 24.
    Biwa, S., Yamamoto, S., Kobayashi, F., Ohno, N.: Independent scattering and wave attenuation in viscoelastic composites. Int. J. Solids Struct. 41, 435–457 (2004)Google Scholar
  25. 25.
    Hu, H., Strybulevych, A., Page, J.H., Skipetrov, S.E., van Tiggelen, B.A.: Localization of Ultrasound in a Three-Dimensional Elastic Network. Nat. Phys. 4, 945–948 (2008)Google Scholar
  26. 26.
    Derode, A., Tourin, A., Fink, M.: Random Multiple Scattering of Sound, I. Coherent and Ballistic Wave. Phys. Rev. E. 64, 036605 (2001)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Sebastian Papazoglou
    • 1
  • Jürgen Braun
    • 2
  • Dieter Klatt
    • 1
  • Ingolf Sack
    • 1
  1. 1.Department of RadiologyCharité University MedicineBerlinGermany
  2. 2.Institute of Medical InformaticsCharité University MedicineBerlinGermany

Personalised recommendations