Advertisement

Towards Resolving Fiber Crossings with Higher Order Tensor Inpainting

  • Thomas Schultz
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

The use of second-order tensors for the modeling of data from Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) is limited by their inability to represent more than one dominant direction in cases of crossing fiber bundles or partial voluming. Higher-order tensors have been used in High Angular Resolution Diffusion Imaging (HARDI) to overcome these problems, but their larger number of parameters leads to longer measurement times for data acquisition. In this work, we demonstrate that higher-order tensors that indicate likely fiber directions can be estimated from a small number of diffusion-weighted measurements by taking into account information from local neighborhoods. To this end, we generalize tensor voting, a method from computer vision, to higher-order tensors. We demonstrate that the resulting even-order tensor fields facilitate fiber reconstruction at crossings both in synthetic and in real DW-MRI data, and that the odd-order fields differentiate crossings from junctions.

Keywords

Fiber Bundle Diffusion Weight Magnetic Resonance Image Texture Synthesis Fiber Tracking Image Inpainting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I would like to thank Alfred Anwander (MPI CBS, Leipzig, Germany) for providing the DW-MRI dataset that was used to create Fig. 6. This work was supported by a fellowship within the Postdoc Program of the German Academic Exchange Service (DAAD).

References

  1. 1.
    Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M.: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161, 401–407 (1986)Google Scholar
  2. 2.
    Basser, P.J., Mattiello, J., Le Bihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103, 247–254 (1994)Google Scholar
  3. 3.
    Özarslan, E., Mareci, T.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50, 955–965 (2003)Google Scholar
  4. 4.
    Liu, C., Bammer, R., Acar, B., Moseley, M.E.: Characterizing non-gaussian diffusion by using generalized diffusion tensors. Magn. Reson. Med. 51, 924–937 (2004)Google Scholar
  5. 5.
    Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of ACM SIGGRAPH, New Orleans, pp. 417–424. ACM, New York (2000)Google Scholar
  6. 6.
    Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40, 49–71 (2000)Google Scholar
  7. 7.
    Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), Kerkyra, pp. 1033–1038. IEEE, Los Alamitos (1999)Google Scholar
  8. 8.
    Medioni, G., Lee, M.S., Tang, C.K.: A Computational Framework for Segmentation and Grouping. Elsevier, Amsterdam/New York (2000)Google Scholar
  9. 9.
    Guy, G., Medioni, G.: Inferring global perceptual contours from local features. Int. J. Comput. Vis. 20, 113–133 (1996)Google Scholar
  10. 10.
    Jia, J., Tang, C.K.: Image repairing: robust image synthesis by adaptive ND tensor voting. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Madison, vol. 2, pp. 643–650. IEEE, Los Alamitos (2003)Google Scholar
  11. 11.
    Weickert, J., Welk, M.: Tensor field interpolation with PDEs. In: Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields, pp. 315–325. Springer, Berlin/Heidelberg (2006)Google Scholar
  12. 12.
    Barmpoutis, A., Vemuri, B.C., Howland, D., Forder, J.R.: Extracting tractosemas from a displacement probability field for tractography in DW-MRI. In: Metaxas D. et al. (eds.) Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI), New York. Lecture Notes in Computer Science, vol. 5241, pp. 9–16. Springer, Berlin/Heidelberg (2008)Google Scholar
  13. 13.
    Prčkovska, V.: High angular resolution diffusion imaging – processing & visualization. Ph.D. thesis, Technische Universiteit Eindhoven (2010)Google Scholar
  14. 14.
    Caan, M., Sage, C., van der Graaf, M., Grimbergen, C., Sunaert, S., van Vliet, L., Vos, F.: Dual tensor atlas generation based on a cohort of coregistered non-HARDI datasets. In: Yang, G.Z. et al. (eds.) Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI), London. Lecture Notes in Computer Science, vol. 5761, pp. 869–876. Springer, Berlin/Heidelberg (2009)Google Scholar
  15. 15.
    Weinstein, D., Kindlmann, G., Lundberg, E.: Tensorlines: advection-diffusion based propagation through diffusion tensor fields. In: Proceedings of IEEE Visualization, IEEE Computer Society Press, San Francisco, pp. 249–253 (1999)Google Scholar
  16. 16.
    Mangin, J.F., Poupon, C., Cointepas, Y., Rivière, D., Papadopoulos-Orfanos, D., Clark, C.A., Régis, J., Le Bihan, D.: A framework based on spin glass models for the inference of anatomical connectivity from diffusion-weighted MR data – a technical review. NMR Biomed. 15, 481–492 (2002)Google Scholar
  17. 17.
    Cointepas, Y., Poupon, C., Le Bihan, D., Mangin, J.F.: A spin glass based framework to untangle fiber crossing in MR diffusion based tracking. In: Dohi, T., Kikinis, R. (eds.) Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI), Tokyo. Lecture Notes in Computer Science, vol. 2488, pp. 475–482. Springer, Berlin/Heidelberg (2002)Google Scholar
  18. 18.
    Aganj, I., Lenglet, C., Keriven, R., Sapiro, G., Harel, N., Thompson, P.: A Hough transform global approach to diffusion MRI tractography. In: Proceedings of International Society of Magnetic Resonance in Medicine (ISMRM), Honolulu, vol. 17, p. 854. The Society, Berkeley (2009)Google Scholar
  19. 19.
    Mordohai, P., Medioni, G.: Tensor voting: a perceptual organization approach to computer vision and machine learning. Morgan & Claypool, San Rafael (2007)Google Scholar
  20. 20.
    Schultz, T., Weickert, J., Seidel, H.P.: A higher-order structure tensor. In: Laidlaw, D.H., Weickert, J. (eds.) Visualization and Processing of Tensor Fields – Advances and Perspectives, pp. 263–280. Springer, Berlin/Heidelberg (2009)Google Scholar
  21. 21.
    Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000)Google Scholar
  22. 22.
    Schultz, T., Seidel, H.P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Graph. (Proc. IEEE Visualization) 14, 1635–1642 (2008)Google Scholar
  23. 23.
    Seunarine, K.K., Cook, P.A., Hall, M.G., Embleton, K.V., Parker, G.J.M., Alexander, D.C.: Exploiting peak anisotropy for tracking through complex structures. In: Proceedings of IEEE Workshop Mathematical Methods in Biomedical Image Analysis (MMBIA), IEEE, Rio de Janeiro, Brazil, pp. 1–8 (2007)Google Scholar
  24. 24.
    Schultz, T., Kindlmann, G.: A maximum enhancing higher-order tensor glyph. Comput. Graph. Forum (Proc. EuroVis) 29, 1143–1152 (2010)Google Scholar
  25. 25.
    Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.M.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269 (1999)Google Scholar
  26. 26.
    Westin, C.F., Maier, S., Khidhir, B., Everett, P., Jolesz, F., Kikinis, R.: Image processing for diffusion tensor magnetic resonance imaging. In: Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI), Cambridge. Lecture Notes in Computer Science, vol. 1679, pp. 441–452. Springer, Berlin/New York (1999)Google Scholar
  27. 27.
    Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. B 111, 209–219 (1996)Google Scholar
  28. 28.
    Kindlmann, G.: Superquadric tensor glyphs. In: EG/IEEE Symposium on Visualization (SymVis), Eurographics Association, Konstanz, Germany, pp. 147–154 (2004)Google Scholar
  29. 29.
    Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23, 1176–1185 (2004)Google Scholar
  30. 30.
    Niizuma, K., Fujimura, M., Kumabe, T., Higano, S., Tominaga, T.: Surgical treatment of paraventricular cavernous angioma: fibre tracking for visualizing the corticospinal tract and determining surgical approach. J. Clin. Neurosci. 13, 1028–1032 (2006)Google Scholar
  31. 31.
    Nimsky, C., Ganslandt, O., Enders, F., Merhof, D., Hammen, T., Buchfelder, M.: Visualization strategies for major white matter tracts for intraoperative use. Int. J. Comput. Assist. Radiol. Surg. 1, 13–22 (2006)Google Scholar
  32. 32.
    Qazi, A.A., Radmanesh, A., O’Donnell, L., Kindlmann, G., Peled, S., Westin, C.F., Golby, A.J.: Resolving crossings in the corticospinal tract by two-tensor streamline tractography: method and clinical assessment using fMRI. NeuroImage 47, T98–T106 (2009)Google Scholar
  33. 33.
    Tong, W.S., Tang, C.K., Mordohai, P., Medioni, G.: First order augmentation to tensor voting for boundary inference and multiscale analysis in 3D. IEEE Trans. Pattern Anal. Mach. Intell. 26, 594–611 (2004)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Computation InstituteUniversity of ChicagoChicagoUSA

Personalised recommendations