Innate Immune Responses to Hepatitis C Virus

Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 369)

Abstract

The innate immune response provides the first line of defense against invading viral pathogens. Incoming viruses are sensed by dedicated host factors that, when triggered, initiate multiple signal transduction pathways. Activation of these pathways leads to the induction of highly orchestrated transcriptional programs designed to limit virus replication and spread. In recent years, our understanding of innate immune responses targeting hepatitis C virus (HCV) has increased substantially, largely due to the development of new systems and methodologies to study HCV–host interactions in vitro and in vivo. However, significant gaps still remain. Here, we aim to provide a comprehensive view of the innate immune response to HCV, focusing primarily on knowledge gained from cell culture models of HCV infection, as well as data from human patients infected with HCV. While some paradigms of the host response to HCV revealed in cell culture translate to human infection in vivo, others are less clear. Further insight into the similarities and differences in these systems will not only reveal directions for future studies on HCV immunity, but may also guide the development of novel strategies to control HCV and other viral infections.

Keywords

Huh7 Cell IL28B Genotype Antiviral Signaling IL28B mRNA Level Primary Human Hepatocyte Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbate I, Romano M, Longo R, Cappiello G, Lo Iacono O, Di Marco V, Paparella C, Spano A, Capobianchi MR (2003) Endogenous levels of mRNA for IFNs and IFN-related genes in hepatic biopsies of chronic HCV-infected and non-alcoholic steatohepatitis patients. J Med Virol 70:581–587. doi: 10.1002/jmv.10433 PubMedCrossRefGoogle Scholar
  2. Abe H, Hayes CN, Ochi H, Maekawa T, Tsuge M, Miki D, Mitsui F, Hiraga N, Imamura M, Takahashi S, Kubo M, Nakamura Y, Chayama K (2011) IL28 variation affects expression of interferon stimulated genes and peg-interferon and ribavirin therapy. J Hepatol 54:1094–1101. doi: 10.1016/j.jhep.2010.09.019 PubMedCrossRefGoogle Scholar
  3. Andrus L, Marukian S, Jones CT, Catanese MT, Sheahan TP, Schoggins JW, Barry WT, Dustin LB, Trehan K, Ploss A, Bhatia SN, Rice CM (2011) Expression of paramyxovirus V proteins promotes replication and spread of hepatitis C virus in cultures of primary human fetal liver cells. Hepatology 54:1901–1912. doi: 10.1002/hep.24557 PubMedCrossRefGoogle Scholar
  4. Arnaud N, Dabo S, Akazawa D, Fukasawa M, Shinkai-Ouchi F, Hugon J, Wakita T, Meurs EF (2011) Hepatitis C virus reveals a novel early control in acute immune response. PLoS Pathog 7:e1002289. doi: 10.1371/journal.ppat.1002289 PubMedCrossRefGoogle Scholar
  5. Asahina Y, Tsuchiya K, Muraoka M, Tanaka K, Suzuki Y, Tamaki N, Hoshioka Y, Yasui Y, Katoh T, Hosokawa T, Ueda K, Nakanishi H, Itakura J, Takahashi Y, Kurosaki M, Enomoto N, Nitta S, Sakamoto N, Izumi N (2012) Association of gene expression involving innate immunity and genetic variation in interleukin 28B with antiviral response. Hepatology 55:20–29. doi: 10.1002/hep.24623 PubMedCrossRefGoogle Scholar
  6. Baril M, Racine ME, Penin F, Lamarre D (2009) MAVS dimer is a crucial signaling component of innate immunity and the target of hepatitis C virus NS3/4A protease. J Virol 83:1299–1311. doi: 10.1128/JVI.01659-08 PubMedCrossRefGoogle Scholar
  7. Bartenschlager R, Lohmann V (2000) Replication of hepatitis C virus. J Gen Virol 81:1631–1648PubMedGoogle Scholar
  8. Bellecave P, Sarasin-Filipowicz M, Donze O, Kennel A, Gouttenoire J, Meylan E, Terracciano L, Tschopp J, Sarrazin C, Berg T, Moradpour D, Heim MH (2010) Cleavage of mitochondrial antiviral signaling protein in the liver of patients with chronic hepatitis C correlates with a reduced activation of the endogenous interferon system. Hepatology 51:1127–1136. doi: 10.1002/hep.23426 PubMedCrossRefGoogle Scholar
  9. Bigger CB, Brasky KM, Lanford RE (2001) DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J Virol 75:7059–7066. doi: 10.1128/JVI.75.15.7059-7066.2001 PubMedCrossRefGoogle Scholar
  10. Binder M, Kochs G, Bartenschlager R, Lohmann V (2007) Hepatitis C virus escape from the interferon regulatory factor 3 pathway by a passive and active evasion strategy. Hepatology 46:1365–1374. doi: 10.1002/hep.21829 PubMedCrossRefGoogle Scholar
  11. Binder M, Eberle F, Seitz S, Mucke N, Huber CM, Kiani N, Kaderali L, Lohmann V, Dalpke A, Bartenschlager R (2011) Molecular mechanism of signal perception and integration by the innate immune sensor retinoic acid-inducible gene-I (RIG-I). J Bio Chem 286:27278–27287. doi: 10.1074/jbc.M111.256974 CrossRefGoogle Scholar
  12. Blight KJ, Kolykhalov AA, Rice CM (2000) Efficient initiation of HCV RNA replication in cell culture. Science 290:1972–1974PubMedCrossRefGoogle Scholar
  13. Blight KJ, McKeating JA, Rice CM (2002) Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76:13001–13014PubMedCrossRefGoogle Scholar
  14. Broering R, Zhang X, Kottilil S, Trippler M, Jiang M, Lu M, Gerken G, Schlaak JF (2010) The interferon stimulated gene 15 functions as a proviral factor for the hepatitis C virus and as a regulator of the IFN response. Gut 59:1111–1119. doi: 10.1136/gut.2009.195545 PubMedCrossRefGoogle Scholar
  15. Cai Z, Zhang C, Chang KS, Jiang J, Ahn BC, Wakita T, Liang TJ, Luo G (2005) Robust production of infectious hepatitis C virus (HCV) from stably HCV cDNA-transfected human hepatoma cells. J Virol 79:13963–13973. doi: 10.1128/JVI.79.22.13963-13973.2005 PubMedCrossRefGoogle Scholar
  16. Charlton MR, Thompson A, Veldt BJ, Watt K, Tillmann H, Poterucha JJ, Heimbach JK, Goldstein D, McHutchison J (2011) Interleukin-28B polymorphisms are associated with histological recurrence and treatment response following liver transplantation in patients with hepatitis C virus infection. Hepatology 53:317–324. doi: 10.1002/hep.24074 PubMedCrossRefGoogle Scholar
  17. Chen L, Borozan I, Feld J, Sun J, Tannis LL, Coltescu C, Heathcote J, Edwards AM, McGilvray ID (2005) Hepatic gene expression discriminates responders and non-responders in treatment of chronic hepatitis C viral infection. Gastroenterology 128:1437–1444PubMedCrossRefGoogle Scholar
  18. Chen L, Sun J, Meng L, Heathcote J, Edwards AM, McGilvray ID (2010) ISG15, a ubiquitin-like interferon-stimulated gene, promotes hepatitis C virus production in vitro: implications for chronic infection and response to treatment. J Gen Virol 91:382–388. doi: 10.1099/vir.0.015388-0 PubMedCrossRefGoogle Scholar
  19. Choi SS, Bradrick S, Qiang G, Mostafavi A, Chaturvedi G, Weinman SA, Diehl AM, Jhaveri R (2011) Up-regulation of Hedgehog pathway is associated with cellular permissiveness for hepatitis C virus replication. Hepatology 54:1580–1590. doi: 10.1002/hep.24576 PubMedCrossRefGoogle Scholar
  20. Chung RT, He W, Saquib A, Contreras AM, Xavier RJ, Chawla A, Wang TC, Schmidt EV (2001) Hepatitis C virus replication is directly inhibited by IFN-alpha in a full-length binary expression system. Proc Natl Acad Sci USA 98:9847–9852. doi: 10.1073/pnas.171319698 PubMedCrossRefGoogle Scholar
  21. Coto-Llerena M, Perez-Del-Pulgar S, Crespo G, Carrion JA, Martinez SM, Sanchez-Tapias JM, Martorell J, Navasa M, Forns X (2011) Donor and recipient IL28B polymorphisms in HCV-infected patients undergoing antiviral therapy before and after liver transplantation. Am J Transplant (Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons) 11:1051–1057. doi: 10.1111/j.1600-6143.2011.03491.x CrossRefGoogle Scholar
  22. Crampton SP, Deane JA, Feigenbaum L, Bolland S (2012) Ifih1 gene dose effect reveals MDA5-mediated chronic type I IFN gene signature, viral resistance, and accelerated autoimmunity. J Immunol 188:1451–1459. doi: 10.4049/jimmunol.1102705 PubMedCrossRefGoogle Scholar
  23. Dansako H, Ikeda M, Kato N (2007) Limited suppression of the interferon-beta production by hepatitis C virus serine protease in cultured human hepatocytes. FEBS J 274:4161–4176. doi: 10.1111/j.1742-4658.2007.05942.x PubMedCrossRefGoogle Scholar
  24. Dansako H, Ikeda M, Ariumi Y, Wakita T, Kato N (2009) Double-stranded RNA-induced interferon-beta and inflammatory cytokine production modulated by hepatitis C virus serine proteases derived from patients with hepatic diseases. Arch Virol 154:801–810. doi: 10.1007/s00705-009-0375-z PubMedCrossRefGoogle Scholar
  25. Dill MT, Duong FH, Vogt JE, Bibert S, Bochud PY, Terracciano L, Papassotiropoulos A, Roth V, Heim MH (2011) Interferon-induced gene expression is a stronger predictor of treatment response than IL28B genotype in patients with hepatitis C. Gastroenterol 140:1021–1031. doi: 10.1053/j.gastro.2010.11.039, S0016-5085(10)01729-4 (pii) Google Scholar
  26. Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, Nibert ML, Superti-Furga G, Kagan JC (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141:668–681. doi: 10.1016/j.cell.2010.04.018 PubMedCrossRefGoogle Scholar
  27. Eksioglu EA, Zhu H, Bayouth L, Bess J, Liu HY, Nelson DR, Liu C (2011) Characterization of HCV interactions with Toll-like receptors and RIG-I in liver cells. PLoS One 6:e21186. doi: 10.1371/journal.pone.0021186 PubMedCrossRefGoogle Scholar
  28. Eurich D, Boas-Knoop S, Ruehl M, Schulz M, Carrillo ED, Berg T, Neuhaus R, Neuhaus P, Neumann UP, Bahra M (2011) Relationship between the interleukin-28b gene polymorphism and the histological severity of hepatitis C virus-induced graft inflammation and the response to antiviral therapy after liver transplantation. Liver Transplant (Official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society) 17:289–298. doi: 10.1002/lt.22235 CrossRefGoogle Scholar
  29. Feigelstock DA, Mihalik KB, Kaplan G, Feinstone SM (2010) Increased susceptibility of Huh7 cells to HCV replication does not require mutations in RIG-I. Virol J 7:44. doi: 10.1186/1743-422X-7-44 PubMedCrossRefGoogle Scholar
  30. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4:491–496. doi: 10.1038/ni921 PubMedCrossRefGoogle Scholar
  31. Foy E, Li K, Wang C, Sumpter R Jr, Ikeda M, Lemon SM, Gale M Jr (2003) Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science 300:1145–1148. doi: 10.1126/science.1082604 PubMedCrossRefGoogle Scholar
  32. Fredericksen BL, Keller BC, Fornek J, Katze MG, Gale M Jr (2008) Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol 82:609–616. doi: 10.1128/JVI.01305-07 PubMedCrossRefGoogle Scholar
  33. Frese M, Pietschmann T, Moradpour D, Haller O, Bartenschlager R (2001) Interferon-alpha inhibits hepatitis C virus subgenomic RNA replication by an MxA-independent pathway. J Gen Virol 82:723–733PubMedGoogle Scholar
  34. Fukuhara T, Taketomi A, Motomura T, Okano S, Ninomiya A, Abe T, Uchiyama H, Soejima Y, Shirabe K, Matsuura Y, Maehara Y (2010) Variants in IL28B in liver recipients and donors correlate with response to peg-interferon and ribavirin therapy for recurrent hepatitis C. Gastroenterology 139:1577–1585, 1585 e1-3. doi:  10.1053/j.gastro.2010.07.058 Google Scholar
  35. Garaigorta U, Chisari FV (2009) Hepatitis C virus blocks interferon effector function by inducing protein kinase R phosphorylation. Cell Host Microbe 6:513–522. doi: 10.1016/j.chom.2009.11.004 PubMedCrossRefGoogle Scholar
  36. Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, Heinzen EL, Qiu P, Bertelsen AH, Muir AJ, Sulkowski M, McHutchison JG, Goldstein DB (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461:399–401. doi:  10.1038/nature08309, nature08309 (pii) Google Scholar
  37. Guo JT, Bichko VV, Seeger C (2001) Effect of alpha interferon on the hepatitis C virus replicon. J Virol 75:8516–8523PubMedCrossRefGoogle Scholar
  38. He XS, Ji X, Hale MB, Cheung R, Ahmed A, Guo Y, Nolan GP, Pfeffer LM, Wright TL, Risch N, Tibshirani R, Greenberg HB (2006) Global transcriptional response to interferon is a determinant of HCV treatment outcome and is modified by race. Hepatology 44:352–359. doi: 10.1002/hep.21267 PubMedCrossRefGoogle Scholar
  39. Helbig KJ, Lau DT, Semendric L, Harley HA, Beard MR (2005) Analysis of ISG expression in chronic hepatitis C identifies viperin as a potential antiviral effector. Hepatology 42:702–710. doi: 10.1002/hep.20844 PubMedCrossRefGoogle Scholar
  40. Helbig KJ, Eyre NS, Yip E, Narayana S, Li K, Fiches G, McCartney EM, Jangra RK, Lemon SM, Beard MR (2011) The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A. Hepatology 54:1506–1517. doi: 10.1002/hep.24542 PubMedCrossRefGoogle Scholar
  41. Honda M, Sakai A, Yamashita T, Nakamoto Y, Mizukoshi E, Sakai Y, Nakamura M, Shirasaki T, Horimoto K, Tanaka Y, Tokunaga K, Mizokami M, Kaneko S (2010) Hepatic ISG expression is associated with genetic variation in interleukin 28B and the outcome of IFN therapy for chronic hepatitis C. Gastroenterology 139:499–509. doi:  10.1053/j.gastro.2010.04.049, S0016-5085(10)00657-8 (pii)Google Scholar
  42. Horner SM, Gale M Jr (2009) Intracellular innate immune cascades and interferon defenses that control hepatitis C virus. J Interferon Cytokine Res (The Official Journal of the International Society for Interferon and Cytokine Research) 29:489–498. doi: 10.1089/jir.2009.0063 CrossRefGoogle Scholar
  43. Horner SM, Liu HM, Park HS, Briley J, Gale M Jr (2011) Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci USA 108:14590–14595. doi: 10.1073/pnas.1110133108 PubMedCrossRefGoogle Scholar
  44. Horner SM, Park HS, Gale M Jr (2012) Control of innate immune signaling and membrane targeting by the Hepatitis C virus NS3/4A protease are governed by the NS3 helix alpha0. J Virol 86:3112–3120. doi: 10.1128/JVI.06727-11 PubMedCrossRefGoogle Scholar
  45. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G (2006) 5’-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997. doi: 10.1126/science.1132505 PubMedCrossRefGoogle Scholar
  46. Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146:448–461. doi: 10.1016/j.cell.2011.06.041 PubMedCrossRefGoogle Scholar
  47. Huang Y, Feld JJ, Sapp RK, Nanda S, Lin JH, Blatt LM, Fried MW, Murthy K, Liang TJ (2007) Defective hepatic response to interferon and activation of suppressor of cytokine signaling 3 in chronic hepatitis C. Gastroenterology 132:733–744. doi: 10.1053/j.gastro.2006.11.045 PubMedCrossRefGoogle Scholar
  48. Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–678. doi: 10.1038/nature07317 PubMedCrossRefGoogle Scholar
  49. Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461:788–792. doi: 10.1038/nature08476 PubMedCrossRefGoogle Scholar
  50. Itsui Y, Sakamoto N, Kurosaki M, Kanazawa N, Tanabe Y, Koyama T, Takeda Y, Nakagawa M, Kakinuma S, Sekine Y, Maekawa S, Enomoto N, Watanabe M (2006) Expressional screening of interferon-stimulated genes for antiviral activity against hepatitis C virus replication. J Viral Hepat 13: 690–700. doi:  10.1111/j.1365-2893.2006.00732.x, JVH732 (pii) Google Scholar
  51. Itsui Y, Sakamoto N, Kakinuma S, Nakagawa M, Sekine-Osajima Y, Tasaka-Fujita M, Nishimura-Sakurai Y, Suda G, Karakama Y, Mishima K, Yamamoto M, Watanabe T, Ueyama M, Funaoka Y, Azuma S, Watanabe M (2009) Antiviral effects of the interferon-induced protein guanylate binding protein 1 and its interaction with the hepatitis C virus NS5B protein. Hepatology 50:1727–1737. doi: 10.1002/hep.23195 PubMedCrossRefGoogle Scholar
  52. Jiang D, Guo H, Xu C, Chang J, Gu B, Wang L, Block TM, Guo JT (2008) Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus. J Virol 82:1665–1678. doi: 10.1128/JVI.02113-07, JVI.02113-07 (pii)Google Scholar
  53. Jiang F, Ramanathan A, Miller MT, Tang GQ, Gale M Jr, Patel SS, Marcotrigiano J (2011) Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479:423–427. doi: 10.1038/nature10537 PubMedCrossRefGoogle Scholar
  54. Johnson CL, Owen DM, Gale M Jr (2007) Functional and therapeutic analysis of hepatitis C virus NS3.4A protease control of antiviral immune defense. J Biol Chem 282:10792–10803. doi: 10.1074/jbc.M610361200 PubMedCrossRefGoogle Scholar
  55. Jouan L, Melancon P, Rodrigue-Gervais IG, Raymond VA, Selliah S, Boucher G, Bilodeau M, Grandvaux N, Lamarre D (2010) Distinct antiviral signaling pathways in primary human hepatocytes and their differential disruption by HCV NS3 protease. J Hepatol 52:167–175. doi: 10.1016/j.jhep.2009.11.011 PubMedCrossRefGoogle Scholar
  56. Kanazawa N, Kurosaki M, Sakamoto N, Enomoto N, Itsui Y, Yamashiro T, Tanabe Y, Maekawa S, Nakagawa M, Chen CH, Kakinuma S, Oshima S, Nakamura T, Kato T, Wakita T, Watanabe M (2004) Regulation of hepatitis C virus replication by interferon regulatory factor 1. J Virol 78:9713–9720. doi: 10.1128/JVI.78.18.9713-9720.2004 PubMedCrossRefGoogle Scholar
  57. Kato T, Esumi M, Yamashita S, Abe K, Shikata T (1992) Interferon-inducible gene expression in chimpanzee liver infected with hepatitis C virus. Virology 190:856–860PubMedCrossRefGoogle Scholar
  58. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6:981–988. doi: 10.1038/ni1243 PubMedCrossRefGoogle Scholar
  59. Kawasaki T, Kawai T, Akira S (2011) Recognition of nucleic acids by pattern-recognition receptors and its relevance in autoimmunity. Immunol Rev 243:61–73. doi: 10.1111/j.1600-065X.2011.01048.x PubMedCrossRefGoogle Scholar
  60. Ke PY, Chen SS (2011) Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J Clin Investig 121:37–56. doi: 10.1172/JCI41474 PubMedCrossRefGoogle Scholar
  61. Keating SE, Baran M, Bowie AG (2011) Cytosolic DNA sensors regulating type I interferon induction. Trends Immunol 32:574–581. doi: 10.1016/j.it.2011.08.004 PubMedCrossRefGoogle Scholar
  62. Koshiba T, Yasukawa K, Yanagi Y, Kawabata S (2011) Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling. Sci Signaling 4 (ra7) doi:  10.1126/scisignal.2001147
  63. Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, Langer JA, Sheikh F, Dickensheets H, Donnelly RP (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4:69–77. doi: 10.1038/ni875 PubMedCrossRefGoogle Scholar
  64. Kowalinski E, Lunardi T, McCarthy AA, Louber J, Brunel J, Grigorov B, Gerlier D, Cusack S (2011) Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147:423–435. doi: 10.1016/j.cell.2011.09.039 PubMedCrossRefGoogle Scholar
  65. Kumar H, Kawai T, Akira S (2009) Toll-like receptors and innate immunity. Biochem Biophys Res Commun 388:621–625. doi: 10.1016/j.bbrc.2009.08.062 PubMedCrossRefGoogle Scholar
  66. Lamarre D, Anderson PC, Bailey M, Beaulieu P, Bolger G, Bonneau P, Bos M, Cameron DR, Cartier M, Cordingley MG, Faucher AM, Goudreau N, Kawai SH, Kukolj G, Lagace L, LaPlante SR, Narjes H, Poupart MA, Rancourt J, Sentjens RE, St George R, Simoneau B, Steinmann G, Thibeault D, Tsantrizos YS, Weldon SM, Yong CL, Llinas-Brunet M (2003) An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature 426:186–189. doi: 10.1038/nature02099 PubMedCrossRefGoogle Scholar
  67. Lanford RE, Guerra B, Lee H, Averett DR, Pfeiffer B, Chavez D, Notvall L, Bigger C (2003) Antiviral effect and virus-host interactions in response to alpha interferon, gamma interferon, poly(i)-poly(c), tumor necrosis factor alpha, and ribavirin in hepatitis C virus subgenomic replicons. J Virol 77:1092–1104PubMedCrossRefGoogle Scholar
  68. Lanford RE, Guerra B, Bigger CB, Lee H, Chavez D, Brasky KM (2007) Lack of response to exogenous interferon-alpha in the liver of chimpanzees chronically infected with hepatitis C virus. Hepatology 46:999–1008. doi: 10.1002/hep.21776 PubMedCrossRefGoogle Scholar
  69. Lavanchy D (2009) The global burden of hepatitis C. Liver Int (Official Journal of the International Association for the Study of the Liver) 29(Suppl 1):74–81. doi: 10.1111/j.1478-3231.2008.01934.x CrossRefGoogle Scholar
  70. Lempicki RA, Polis MA, Yang J, McLaughlin M, Koratich C, Huang DW, Fullmer B, Wu L, Rehm CA, Masur H, Lane HC, Sherman KE, Fauci AS, Kottilil S (2006) Gene expression profiles in hepatitis C virus (HCV) and HIV coinfection: class prediction analyses before treatment predict the outcome of anti-HCV therapy among HIV-coinfected persons. J Infect Dis 193:1172–1177. doi: 10.1086/501365 PubMedCrossRefGoogle Scholar
  71. Li K, Foy E, Ferreon JC, Nakamura M, Ferreon AC, Ikeda M, Ray SC, Gale M Jr, Lemon SM (2005a) Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci USA 102:2992–2997. doi: 10.1073/pnas.0408824102 PubMedCrossRefGoogle Scholar
  72. Li XD, Sun L, Seth RB, Pineda G, Chen ZJ (2005b) Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci USA 102:17717–17722. doi: 10.1073/pnas.0508531102 PubMedCrossRefGoogle Scholar
  73. Li K, Li NL, Wei D, Pfeffer SR, Fan M, Pfeffer LM (2012) Activation of chemokine and inflammatory cytokine response in hepatitis C virus-infected hepatocytes depends on Toll-like receptor 3 sensing of hepatitis C virus double-stranded RNA intermediates. Hepatology 55:666–675. doi: 10.1002/hep.24763 PubMedCrossRefGoogle Scholar
  74. Liang Y, Ishida H, Lenz O, Lin TI, Nyanguile O, Simmen K, Pyles RB, Bourne N, Yi M, Li K, Lemon SM (2008) Antiviral suppression vs restoration of RIG-I signaling by hepatitis C protease and polymerase inhibitors. Gastroenterology 135(1710–1718):e2. doi: 10.1053/j.gastro.2008.07.023 PubMedGoogle Scholar
  75. Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, Liu CC, Maruyama T, Hynes RO, Burton DR, McKeating JA, Rice CM (2005) Complete replication of hepatitis C virus in cell culture. Science 309:623–626. doi: 10.1126/science.1114016 PubMedCrossRefGoogle Scholar
  76. Lindh M, Lagging M, Arnholm B, Eilard A, Nilsson S, Norkrans G, Soderholm J, Wahlberg T, Wejstal R, Westin J, Hellstrand K (2011) IL28B polymorphisms determine early viral kinetics and treatment outcome in patients receiving peginterferon/ribavirin for chronic hepatitis C genotype 1. J Viral Hepatitis 18:e325–e331. doi: 10.1111/j.1365-2893.2010.01425.x CrossRefGoogle Scholar
  77. Loo YM, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34:680–692. doi: 10.1016/j.immuni.2011.05.003 PubMedCrossRefGoogle Scholar
  78. Luo D, Ding SC, Vela A, Kohlway A, Lindenbach BD, Pyle AM (2011) Structural insights into RNA recognition by RIG-I. Cell 147:409–422. doi: 10.1016/j.cell.2011.09.023 PubMedCrossRefGoogle Scholar
  79. Manuse MJ, Parks GD (2010) TLR3-dependent upregulation of RIG-I leads to enhanced cytokine production from cells infected with the parainfluenza virus SV5. Virology 397:231–241. doi: 10.1016/j.virol.2009.11.014 PubMedCrossRefGoogle Scholar
  80. Marcello T, Grakoui A, Barba-Spaeth G, Machlin ES, Kotenko SV, MacDonald MR, Rice CM (2006) Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131:1887–1898. doi: 10.1053/j.gastro.2006.09.052 PubMedCrossRefGoogle Scholar
  81. Marukian S, Andrus L, Sheahan TP, Jones CT, Charles ED, Ploss A, Rice CM, Dustin LB (2011) Hepatitis C virus induces interferon-lambda and interferon-stimulated genes in primary liver cultures. Hepatology 54:1913–1923. doi: 10.1002/hep.24580 PubMedCrossRefGoogle Scholar
  82. McGilvray I, Feld JJ, Chen L, Pattullo V, Guindi M, Fischer S, Borozan I, Xie G, Selzner N, Heathcote EJ, Siminovitch K (2012) Hepatic cell-type specific gene expression better predicts HCV treatment outcome than IL28B genotype. Gastroenterology 142(1122–1131):e1. doi: 10.1053/j.gastro.2012.01.028 PubMedGoogle Scholar
  83. McHutchison JG, Lawitz EJ, Shiffman ML, Muir AJ, Galler GW, McCone J, Nyberg LM, Lee WM, Ghalib RH, Schiff ER, Galati JS, Bacon BR, Davis MN, Mukhopadhyay P, Koury K, Noviello S, Pedicone LD, Brass CA, Albrecht JK, Sulkowski MS (2009) Peginterferon alfa-2b or alfa-2a with ribavirin for treatment of hepatitis C infection. New Engl J Medicine 361:580–593. doi: 10.1056/NEJMoa0808010 CrossRefGoogle Scholar
  84. Meier V, Mihm S, Ramadori G (2000) M×A gene expression in peripheral blood mononuclear cells from patients infected chronically with hepatitis C virus treated with interferon-alpha. J Med Virol 62:318–326PubMedCrossRefGoogle Scholar
  85. Metz P, Dazert E, Ruggieri A, Mazur J, Kaderali L, Kaul A, Zeuge U, Trippler M, Lohmann V, Binder M, Frese M, Bartenschlager R (2012) Identification of type I and type II interferon-induced effectors controlling hepatitis C virus replication. Hepatology. doi: 10.1002/hep.25908 PubMedGoogle Scholar
  86. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167–1172. doi: 10.1038/nature04193 PubMedCrossRefGoogle Scholar
  87. Mihm S, Frese M, Meier V, Wietzke-Braun P, Scharf JG, Bartenschlager R, Ramadori G (2004) Interferon type I gene expression in chronic hepatitis C. Laboratory investigation. J Tech Methods Pathol 84:1148–1159. doi: 10.1038/labinvest.3700135 Google Scholar
  88. Motomura T, Taketomi A, Fukuhara T, Mano Y, Takeishi K, Toshima T, Harada N, Uchiyama H, Yoshizumi T, Soejima Y, Shirabe K, Matsuura Y, Maehara Y (2011) The impact of IL28B genetic variants on recurrent hepatitis C in liver transplantation: significant lessons from a dual graft case. Am J Transplant (Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons) 11:1325–1329. doi: 10.1111/j.1600-6143.2011.03537.x CrossRefGoogle Scholar
  89. Murashima S, Kumashiro R, Ide T, Miyajima I, Hino T, Koga Y, Ishii K, Ueno T, Sakisaka S, Sata M (2000) Effect of interferon treatment on serum 2’,5’-oligoadenylate synthetase levels in hepatitis C-infected patients. J Med Virol 62:185–190PubMedCrossRefGoogle Scholar
  90. Naggie S, Osinusi A, Katsounas A, Lempicki R, Herrmann E, Thompson AJ, Clark PJ, Patel K, Muir AJ, McHutchison JG, Schlaak JF, Trippler M, Shivakumar B, Masur H, Polis MA, Kottilil S (2012) Dysregulation of innate immunity in HCV genotype 1 IL28B unfavorable genotype patients: Impaired viral kinetics and therapeutic response. Hepatology. doi: 10.1002/hep.25647 PubMedGoogle Scholar
  91. O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364. doi: 10.1038/nri2079 PubMedCrossRefGoogle Scholar
  92. Onoguchi K, Onomoto K, Takamatsu S, Jogi M, Takemura A, Morimoto S, Julkunen I, Namiki H, Yoneyama M, Fujita T (2010) Virus-infection or 5’ppp-RNA activates antiviral signal through redistribution of IPS-1 mediated by MFN1. PLoS Pathog 6:e1001012. doi: 10.1371/journal.ppat.1001012 PubMedCrossRefGoogle Scholar
  93. Patel MR, Loo YM, Horner SM, Gale M Jr, Malik HS (2012) Convergent evolution of escape from hepaciviral antagonism in primates. PLoS Biol 10:e1001282. doi: 10.1371/journal.pbio.1001282 PubMedCrossRefGoogle Scholar
  94. Pestka S (2007) The interferons: 50 years after their discovery, there is much more to learn. J Bio Chem 282:20047–20051. doi: 10.1074/jbc.R700004200 CrossRefGoogle Scholar
  95. Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reis e Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates. Science 314:997–1001. doi: 10.1126/science.1132998 PubMedCrossRefGoogle Scholar
  96. Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, Hergott D, Porter-Gill P, Mumy A, Kohaar I, Chen S, Brand N, Tarway M, Liu L, Sheikh F, Astemborski J, Bonkovsky HL, Edlin BR, Howell CD, Morgan TR, Thomas DL, Rehermann B, Donnelly RP, O'Brien TR. (2013) A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet. 2013 Jan 6, doi:  10.1038/ng.2521
  97. Ramachandran A, Horvath CM (2009) Paramyxovirus disruption of interferon signal transduction: status report. J Interferon Cytokine Res (The Official journal of the International Society for Interferon and Cytokine Research) 29:531–537. doi: 10.1089/jir.2009.0070 CrossRefGoogle Scholar
  98. Randall G, Chen L, Panis M, Fischer AK, Lindenbach BD, Sun J, Heathcote J, Rice CM, Edwards AM, McGilvray ID (2006) Silencing of USP18 potentiates the antiviral activity of interferon against hepatitis C virus infection. Gastroenterology 131:1584–1591. doi: 10.1053/j.gastro.2006.08.043 PubMedCrossRefGoogle Scholar
  99. Rauch A, Kutalik Z, Descombes P, Cai T, Di Iulio J, Mueller T, Bochud M, Battegay M, Bernasconi E, Borovicka J, Colombo S, Cerny A, Dufour JF, Furrer H, Gunthard HF, Heim M, Hirschel B, Malinverni R, Moradpour D, Mullhaupt B, Witteck A, Beckmann JS, Berg T, Bergmann S, Negro F, Telenti A, Bochud PY (2010) Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology 138:1338–1345, 1345 (e1-7). doi:  10.1053/j.gastro.2009.12.056
  100. Raychoudhuri A, Shrivastava S, Steele R, Kim H, Ray R, Ray RB (2011) ISG56 and IFITM1 proteins inhibit hepatitis C virus replication. J Virol 85:12881–12889. doi: 10.1128/JVI.05633-11 PubMedCrossRefGoogle Scholar
  101. Rothenfusser S, Goutagny N, DiPerna G, Gong M, Monks BG, Schoenemeyer A, Yamamoto M, Akira S, Fitzgerald KA (2005) The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J Immunol 175:5260–5268PubMedGoogle Scholar
  102. Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M Jr (2008) Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454:523–527. doi: 10.1038/nature07106 PubMedCrossRefGoogle Scholar
  103. Sarasin-Filipowicz M, Oakeley EJ, Duong FH, Christen V, Terracciano L, Filipowicz W, Heim MH (2008) Interferon signaling and treatment outcome in chronic hepatitis C. Proc Natl Acad Sci USA 105:7034–7039. doi: 10.1073/pnas.0707882105 PubMedCrossRefGoogle Scholar
  104. Sarasin-Filipowicz M, Wang X, Yan M, Duong FH, Poli V, Hilton DJ, Zhang DE, Heim MH (2009) Alpha interferon induces long-lasting refractoriness of JAK-STAT signaling in the mouse liver through induction of USP18/UBP43. Mol Cell Biol 29:4841–4851. doi:  10.1128/MCB.00224-09, MCB.00224-09 (pii) Google Scholar
  105. Satoh T, Kato H, Kumagai Y, Yoneyama M, Sato S, Matsushita K, Tsujimura T, Fujita T, Akira S, Takeuchi O (2010) LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci USA 107:1512–1517. doi: 10.1073/pnas.0912986107 PubMedCrossRefGoogle Scholar
  106. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472:481–485. doi: 10.1038/nature09907 PubMedCrossRefGoogle Scholar
  107. Scott J, Holte S, Urban T, Burgess C, Coppel E, Wang C, Corey L, McHutchison J, Goldstein D (2011) IL28B genotype effects during early treatment with peginterferon and ribavirin in difficult-to-treat hepatitis C virus infection. J Infect Dis 204:419–425. doi: 10.1093/infdis/jir264 PubMedCrossRefGoogle Scholar
  108. Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122:669–682. doi: 10.1016/j.cell.2005.08.012 PubMedCrossRefGoogle Scholar
  109. Sharma S, Tenoever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J (2003) Triggering the interferon antiviral response through an IKK-related pathway. Science 300:1148–1151. doi: 10.1126/science.1081315 PubMedCrossRefGoogle Scholar
  110. Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, Kuestner R, Garrigues U, Birks C, Roraback J, Ostrander C, Dong D, Shin J, Presnell S, Fox B, Haldeman B, Cooper E, Taft D, Gilbert T, Grant FJ, Tackett M, Krivan W, McKnight G, Clegg C, Foster D, Klucher KM (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4:63–68. doi: 10.1038/ni873 PubMedCrossRefGoogle Scholar
  111. Shin EC, Seifert U, Kato T, Rice CM, Feinstone SM, Kloetzel PM, Rehermann B (2006) Virus-induced type I IFN stimulates generation of immunoproteasomes at the site of infection. J Clin Investig 116:3006–3014. doi: 10.1172/JCI29832 PubMedCrossRefGoogle Scholar
  112. Smith MW, Yue ZN, Korth MJ, Do HA, Boix L, Fausto N, Bruix J, Carithers RL Jr, Katze MG (2003) Hepatitis C virus and liver disease: global transcriptional profiling and identification of potential markers. Hepatology 38:1458–1467. doi: 10.1016/j.hep.2003.09.024 PubMedGoogle Scholar
  113. Stark GR, Darnell JE Jr (2012) The JAK-STAT pathway at twenty. Immunity 36:503–514. doi: 10.1016/j.immuni.2012.03.013 PubMedCrossRefGoogle Scholar
  114. Su AI, Pezacki JP, Wodicka L, Brideau AD, Supekova L, Thimme R, Wieland S, Bukh J, Purcell RH, Schultz PG, Chisari FV (2002) Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci USA 99:15669–15674. doi: 10.1073/pnas.202608199 PubMedCrossRefGoogle Scholar
  115. Sumpter R Jr, Loo YM, Foy E, Li K, Yoneyama M, Fujita T, Lemon SM, Gale M Jr (2005) Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 79:2689–2699. doi: 10.1128/JVI.79.5.2689-2699.2005 PubMedCrossRefGoogle Scholar
  116. Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, Abate ML, Bassendine M, Spengler U, Dore GJ, Powell E, Riordan S, Sheridan D, Smedile A, Fragomeli V, Muller T, Bahlo M, Stewart GJ, Booth DR, George J (2009) IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 41:1100–1104. doi:  10.1038/ng.447, ng.447 (pii) Google Scholar
  117. Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, Sakamoto N, Nakagawa M, Korenaga M, Hino K, Hige S, Ito Y, Mita E, Tanaka E, Mochida S, Murawaki Y, Honda M, Sakai A, Hiasa Y, Nishiguchi S, Koike A, Sakaida I, Imamura M, Ito K, Yano K, Masaki N, Sugauchi F, Izumi N, Tokunaga K, Mizokami M (2009) Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 41:1105–1109. doi:  10.1038/ng.449, ng.449 (pii) Google Scholar
  118. Tang ED, Wang CY (2009) MAVS self-association mediates antiviral innate immune signaling. J Virol 83:3420–3428. doi: 10.1128/JVI.02623-08 PubMedCrossRefGoogle Scholar
  119. Taylor MW, Tsukahara T, Brodsky L, Schaley J, Sanda C, Stephens MJ, McClintick JN, Edenberg HJ, Li L, Tavis JE, Howell C, Belle SH (2007) Changes in gene expression during pegylated interferon and ribavirin therapy of chronic hepatitis C virus distinguish responders from nonresponders to antiviral therapy. J Virol 81:3391–3401. doi: 10.1128/JVI.02640-06 PubMedCrossRefGoogle Scholar
  120. Thimme R, Binder M, Bartenschlager R (2012) Failure of innate and adaptive immune responses in controlling hepatitis C virus infection. FEMS Microbiol Rev 36:663–683. doi: 10.1111/j.1574-6976.2011.00319.x PubMedCrossRefGoogle Scholar
  121. Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, O’Huigin C, Kidd J, Kidd K, Khakoo SI, Alexander G, Goedert JJ, Kirk GD, Donfield SM, Rosen HR, Tobler LH, Busch MP, McHutchison JG, Goldstein DB, Carrington M (2009) Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461:798–801. doi: 10.1038/nature08463, nature08463 (pii) Google Scholar
  122. Thomas E, Gonzalez VD, Li Q, Modi AA, Chen W, Noureddin M, Rotman Y, Liang TJ (2012) HCV infection induces a unique hepatic innate immune response associated with robust production of type III interferons. Gastroenterology 142:978–988. doi: 10.1053/j.gastro.2011.12.055 PubMedCrossRefGoogle Scholar
  123. Thompson AJ, Muir AJ, Sulkowski MS, Ge D, Fellay J, Shianna KV, Urban T, Afdhal NH, Jacobson IM, Esteban R, Poordad F, Lawitz EJ, McCone J, Shiffman ML, Galler GW, Lee WM, Reindollar R, King JW, Kwo PY, Ghalib RH, Freilich B, Nyberg LM, Zeuzem S, Poynard T, Vock DM, Pieper KS, Patel K, Tillmann HL, Noviello S, Koury K, Pedicone LD, Brass CA, Albrecht JK, Goldstein DB, McHutchison JG (2010) Interleukin-28B polymorphism improves viral kinetics and is the strongest pretreatment predictor of sustained virologic response in genotype 1 hepatitis C virus. Gastroenterology 139(120–9):e18. doi: 10.1053/j.gastro.2010.04.013 PubMedGoogle Scholar
  124. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, Sirois CM, Jin T, Latz E, Xiao TS, Fitzgerald KA, Paludan SR, Bowie AG (2010) IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11:997–1004. doi: 10.1038/ni.1932 PubMedCrossRefGoogle Scholar
  125. Urban TJ, Thompson AJ, Bradrick SS, Fellay J, Schuppan D, Cronin KD, Hong L, McKenzie A, Patel K, Shianna KV, McHutchison JG, Goldstein DB, Afdhal N (2010) IL28B genotype is associated with differential expression of intrahepatic interferon-stimulated genes in patients with chronic hepatitis C. Hepatology 52:1888–1896. doi: 10.1002/hep.23912 PubMedCrossRefGoogle Scholar
  126. Uze G, Schreiber G, Piehler J, Pellegrini S (2007) The receptor of the type I interferon family. Curr Top Microbiol Immunol 316:71–95PubMedCrossRefGoogle Scholar
  127. Vilasco M, Larrea E, Vitour D, Dabo S, Breiman A, Regnault B, Riezu JI, Eid P, Prieto J, Meurs EF (2006) The protein kinase IKKepsilon can inhibit HCV expression independently of IFN and its own expression is downregulated in HCV-infected livers. Hepatology 44:1635–1647. doi: 10.1002/hep.21432 PubMedCrossRefGoogle Scholar
  128. Walters KA, Joyce MA, Thompson JC, Smith MW, Yeh MM, Proll S, Zhu LF, Gao TJ, Kneteman NM, Tyrrell DL, Katze MG (2006) Host-specific response to HCV infection in the chimeric SCID-beige/Alb-uPA mouse model: role of the innate antiviral immune response. PLoS Pathog 2:e59. doi: 10.1371/journal.ppat.0020059 PubMedCrossRefGoogle Scholar
  129. Wang C, Pflugheber J, Sumpter R Jr, Sodora DL, Hui D, Sen GC, Gale M Jr (2003) Alpha interferon induces distinct translational control programs to suppress hepatitis C virus RNA replication. J Virol 77:3898–3912PubMedCrossRefGoogle Scholar
  130. Wang N, Liang Y, Devaraj S, Wang J, Lemon SM, Li K (2009) Toll-like receptor 3 mediates establishment of an antiviral state against hepatitis C virus in hepatoma cells. J Virol 83:9824–9834. doi: 10.1128/JVI.01125-09 PubMedCrossRefGoogle Scholar
  131. Wang S, Wu X, Pan T, Song W, Wang Y, Zhang F, Yuan Z (2012) Viperin inhibits hepatitis C virus replication by interfering with binding of NS5A to host protein hVAP-33. J Gen Virol 93:83–92. doi: 10.1099/vir.0.033860-0 PubMedCrossRefGoogle Scholar
  132. Welsch C, Jesudian A, Zeuzem S, Jacobson I (2012) New direct-acting antiviral agents for the treatment of hepatitis C virus infection and perspectives. Gut 61(Suppl 1):i36–i46. doi: 10.1136/gutjnl-2012-302144 PubMedCrossRefGoogle Scholar
  133. Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19:727–740. doi: 10.1016/j.molcel.2005.08.014 PubMedCrossRefGoogle Scholar
  134. Yang D, Liu N, Zuo C, Lei S, Wu X, Zhou F, Liu C, Zhu H (2011) Innate host response in primary human hepatocytes with hepatitis C virus infection. PLoS One 6:e27552. doi: 10.1371/journal.pone.0027552 PubMedCrossRefGoogle Scholar
  135. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737. doi: 10.1038/ni1087 PubMedCrossRefGoogle Scholar
  136. Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo YM, Gale M Jr, Akira S, Yonehara S, Kato A, Fujita T (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851–2858PubMedGoogle Scholar
  137. Zhao H, Lin W, Kumthip K, Cheng D, Fusco DN, Hofmann O, Jilg N, Tai AW, Goto K, Zhang L, Hide W, Jang JY, Peng LF, Chung RT (2012) A functional genomic screen reveals novel host genes that mediate interferon-alpha’s effects against hepatitis C virus. J Hepatol 56:326–333. doi: 10.1016/j.jhep.2011.07.026 PubMedCrossRefGoogle Scholar
  138. Zhu H, Zhao H, Collins CD, Eckenrode SE, Run Q, McIndoe RA, Crawford JM, Nelson DR, She JX, Liu C (2003) Gene expression associated with interferon alfa antiviral activity in an HCV replicon cell line. Hepatology 37:1180–1188. doi: 10.1053/jhep.2003.50184 PubMedCrossRefGoogle Scholar
  139. Zhu H, Butera M, Nelson DR, Liu C (2005) Novel type I interferon IL-28A suppresses hepatitis C viral RNA replication. Virol J 2:80. doi: 10.1186/1743-422X-2-80 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasUSA
  2. 2.Laboratory of Virology and Infectious DiseaseCenter for the Study of Hepatitis C, The Rockefeller UniversityNew YorkUSA

Personalised recommendations