Animal Models for Hepatitis C

  • Eva Billerbeck
  • Ype de Jong
  • Marcus Dorner
  • Cynthia de la Fuente
  • Alexander PlossEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 369)


Hepatitis C remains a global epidemic. Approximately 3 % of the world’s population suffers from chronic hepatitis C, which is caused by hepatitis C virus (HCV)—a positive sense, single-stranded RNA virus of the Flaviviridae family. HCV has a high propensity for establishing a chronic infection. If untreated chronic HCV carriers can develop severe liver disease including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Antiviral treatment is only partially effective, costly, and poorly tolerated. A prophylactic or therapeutic vaccine for HCV does not exist. Mechanistic studies of virus-host interactions, HCV immunity, and pathogenesis as well as the development of more effective therapies have been hampered by the lack of a suitable small animal model. Besides humans, chimpanzees are the only species that is naturally susceptible to HCV infection. While experimentation in these large primates has yielded valuable insights, ethical considerations, limited availability, genetic heterogeneity, and cost limit their utility. In search for more tractable small animal models, numerous experimental approaches have been taken to recapitulate parts of the viral life cycle and/or aspects of viral pathogenesis that will be discussed in this review. Exciting new models and improvements in established models hold promise to further elucidate our understanding of chronic HCV infection.


Human Hepatocyte Tree Shrew Humanize Mouse Model Human Liver Chimeric Mouse Fumaryl Acetoacetate Hydrolase 



Alpha-1 antitrypsin


Alanine transaminase


Cluster of differentiation


Canine hepacivirus


Claudin 1


Cytotoxic T lymphocyte


Directly acting antiviral


Epstein-Barr virus


Epidermal growth factor receptor

ES cell

Embryonic stem cell


Fumaryl acetoacetate hydrolase


Fms-like tyrosine kinase receptor-3 ligand


George Baker virus


Granulocyte–macrophage colony-stimulating factor


Hepatitis B virus


Hepatocellular carcinoma


Hepatitis C virus


Human immune system


Human leukocyte antigen


Hematopoietic stem cell


Herpes simplex virus thymidine kinase


Hypervariable region 1






Interleukin 2 receptor gamma deficient


Induced pluripotent stem cell


Japanese patient with fulminant hepatitis


Interferon regulatory factor


Low density lipoprotein receptor


Mitochondrial antiviral signal protein


Major histocompatibility complex


Major urinary protein


Natural killer cell


Non-A/non-B hepatitis


Non-obese diabetic


Non-structural protein


Non-primate hepacivirus


Niemann-Pick C1-like 1






Phosphatidylinositol 4 kinase III alpha


Protein kinase R


Recombinase activating gene


Scavenger recepter type B class I


Severe combined immunodeficiency


Stem cell factor


Signal regulatory protein alpha


Sustained virologic response


Tumor necrosis factor




Urokinase plasminogen activator


Untranslated region


Very low-density lipoprotein


  1. Abe K, Inchauspe G, Shikata T, Prince AM (1992) Three different patterns of hepatitis C virus infection in chimpanzees. Hepatology 15:690–695. doi:S0270913992000776
  2. Abe K, Kurata T, Teramoto Y, Shiga J, Shikata T (1993) Lack of susceptibility of various primates and woodchucks to hepatitis C virus. J Med Primatol 22:433–434PubMedPubMedCentralGoogle Scholar
  3. Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX (1999) Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci U S A 96:12766–12771PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ahlen G, Derk E, Weiland M, Jiao J, Rahbin N, Aleman S, Peterson DL, Pokrovskaja K, Grander D, Frelin L, Sallberg M (2009) Cleavage of the IPS-1/Cardif/MAVS/VISA does not inhibit T cell-mediated elimination of hepatitis C virus non-structural 3/4A-expressing hepatocytes. Gut 58:560–569. doi:gut.2007.14726410.1136
  5. Alonzi T, Agrati C, Costabile B, Cicchini C, Amicone L, Cavallari C, Rocca CD, Folgori A, Fipaldini C, Poccia F, Monica NL, Tripodi M (2004) Steatosis and intrahepatic lymphocyte recruitment in hepatitis C virus transgenic mice. J Gen Virol 85:1509–1520PubMedCrossRefPubMedCentralGoogle Scholar
  6. Alter HJ, Purcell RH, Holland PV, Popper H (1978) Transmissible agent in non-A, non-B hepatitis. Lancet 1:459–463PubMedCrossRefPubMedCentralGoogle Scholar
  7. Amako Y, Tsukiyama-Kohara K, Katsume A, Hirata Y, Sekiguchi S, Tobita Y, Hayashi Y, Hishima T, Funata N, Yonekawa H, Kohara M (2010) Pathogenesis of hepatitis C virus infection in Tupaia belangeri. J Virol 84:303–311. doi:JVI.01448-0910.1128
  8. Andrus L, Marukian S, Jones CT, Catanese MT, Sheahan TP, Schoggins JW, Barry WT, Dustin LB, Trehan K, Ploss A, Bhatia SN, Rice CM (2011) Expression of paramyxovirus V proteins promotes replication and spread of hepatitis C virus in cultures of primary human fetal liver cells. Hepatology 54:1901–1912. doi:10.1002/hep.24557 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E, Strom S, Kay MA, Finegold M, Grompe M (2007) Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice. Nat Biotechnol 25:903–910. doi: 10.1038/nbt1326 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bartenschlager R, Cosset FL, Lohmann V (2010) Hepatitis C virus replication cycle. J Hepatol 53:583–585. doi: 10.1016/j.jhep.2010.04.015 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Barth H, Cerino R, Arcuri M, Hoffmann M, Schurmann P, Adah MI, Gissler B, Zhao X, Ghisetti V, Lavezzo B, Blum HE, von Weizsacker F, Vitelli A, Scarselli E, Baumert TF (2005) Scavenger receptor class B type I and hepatitis C virus infection of primary tupaia hepatocytes. J Virol 79:5774–5785. doi: 10.1128/JVI.79.9.5774-5785.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Barth H, Schafer C, Adah MI, Zhang F, Linhardt RJ, Toyoda H, Kinoshita-Toyoda A, Toida T, Van Kuppevelt TH, Depla E, Von Weizsacker F, Blum HE, Baumert TF (2003) Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol Chem 278:41003–41012. doi: 10.1074/jbc.M302267200 CrossRefPubMedGoogle Scholar
  13. Bassett SE, Brasky KM, Lanford RE (1998) Analysis of hepatitis C virus-inoculated chimpanzees reveals unexpected clinical profiles. J Virol 72:2589–2599PubMedPubMedCentralCrossRefGoogle Scholar
  14. Benali-Furet NL, Chami M, Houel L, De Giorgi F, Vernejoul F, Lagorce D, Buscail L, Bartenschlager R, Ichas F, Rizzuto R, Paterlini-Brechot P (2005) Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene 24:4921–4933. doi: 10.1038/sj.onc.1208673 CrossRefPubMedGoogle Scholar
  15. Bigger CB, Brasky KM, Lanford RE (2001) DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J Virol 75:7059–7066. doi: 10.1128/JVI.75.15.7059-7066.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Billerbeck E, Barry WT, Mu K, Dorner M, Rice CM, Ploss A (2011) Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rgamma(null) humanized mice. Blood 117:3076–3086. doi: 10.1182/blood-2010-08-301507 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bissig KD, Le TT, Woods NB, Verma IM (2007) Repopulation of adult and neonatal mice with human hepatocytes: a chimeric animal model. Proc Natl Acad Sci U S A 104:20507–20511. doi: 10.1073/pnas.0710528105 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bissig KD, Wieland SF, Tran P, Isogawa M, Le TT, Chisari FV, Verma IM (2010) Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. J Clin Invest 120:924–930. doi: 10.1172/JCI40094 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bitzegeio J, Bankwitz D, Hueging K, Haid S, Brohm C, Zeisel MB, Herrmann E, Iken M, Ott M, Baumert TF, Pietschmann T (2010) Adaptation of hepatitis C virus to mouse CD81 permits infection of mouse cells in the absence of human entry factors. PLoS Pathog 6:e1000978. doi: 10.1371/journal.ppat.1000978 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Blight KJ, Kolykhalov AA, Rice CM (2000) Efficient initiation of HCV RNA replication in cell culture. Science 290:1972–1974. doi:9039
  21. Bray M, Davis K, Geisbert T, Schmaljohn C, Huggins J (1998) A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J Infect Dis 178:651–661PubMedCrossRefGoogle Scholar
  22. Brezillon NM, DaSilva L, L’Hote D, Bernex F, Piquet J, Binart N, Morosan S, Kremsdorf D (2008) Rescue of fertility in homozygous mice for the urokinase plasminogen activator transgene by the transplantation of mouse hepatocytes. Cell Transplant 17:803–812PubMedCrossRefGoogle Scholar
  23. Browning J, Horner JW, Pettoello-Mantovani M, Raker C, Yurasov S, DePinho RA, Goldstein H (1997) Mice transgenic for human CD4 and CCR5 are susceptible to HIV infection. Proc Natl Acad Sci U S A 94:14637–14641PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bukh J (2004) A critical role for the chimpanzee model in the study of hepatitis C. Hepatology 39:1469–1475. doi: 10.1002/hep.20268 CrossRefPubMedGoogle Scholar
  25. Bukh J, Apgar CL, Govindarajan S, Purcell RH (2001) Host range studies of GB virus-B hepatitis agent, the closest relative of hepatitis C virus, in New World monkeys and chimpanzees. J Med Virol 65:694–697. doi: 10.1002/jmv.2092 CrossRefPubMedGoogle Scholar
  26. Burbelo PD, Dubovi EJ, Simmonds P, Medina JL, Henriquez JA, Mishra N, Wagner J, Tokarz R, Cullen JM, Iadarola MJ, Rice CM, Lipkin WI, Kapoor A (2012) Serology enabled discovery of genetically diverse hepaciviruses in a new host. J Virol. doi: 10.1128/JVI.00250-12 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chang KS, Cai Z, Zhang C, Sen GC, Williams BR, Luo G (2006) Replication of hepatitis C virus (HCV) RNA in mouse embryonic fibroblasts: protein kinase R (PKR)-dependent and PKR-independent mechanisms for controlling HCV RNA replication and mediating interferon activities. J Virol 80:7364–7374. doi: 10.1128/JVI.00586-06 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chang ML, Chen JC, Chang MY, Yeh CT, Lin WP, Liang CK, Huang SF, Dang KN, Chiu CT, Lin DY (2008) Acute expression of hepatitis C core protein in adult mouse liver: Mitochondrial stress and apoptosis. Scand J Gastroenterol 43:747–755. doi: 10.1080/00365520701875987 CrossRefPubMedGoogle Scholar
  29. Chang ML, Chen TH, Chang MY, Yeh CT (2009) Cell cycle perturbation in the hepatocytes of HCV core transgenic mice following common bile duct ligation is associated with enhanced p21 expression. J Med Virol 81:467–472. doi: 10.1002/jmv.21403 CrossRefPubMedGoogle Scholar
  30. Chayama K, Takahashi S, Toyota J, Karino Y, Ikeda K, Ishikawa H, Watanabe H, McPhee F, Hughes E, Kumada H (2012) Dual therapy with the nonstructural protein 5A inhibitor, daclatasvir, and the nonstructural protein 3 protease inhibitor, asunaprevir, in hepatitis C virus genotype 1b-infected null responders. Hepatology 55:742–748. doi: 10.1002/hep.24724 CrossRefPubMedGoogle Scholar
  31. Chen AA, Thomas DK, Ong LL, Schwartz RE, Golub TR, Bhatia SN (2011) Humanized mice with ectopic artificial liver tissues. Proc Natl Acad Sci U S A 108:11842–11847. doi: 10.1073/pnas.1101791108 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Chen Q, Khoury M, Chen J (2009) Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci U S A 106:21783–21788. doi: 10.1073/pnas.0912274106 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Chiyo T, Sekiguchi S, Hayashi M, Tobita Y, Kanegae Y, Saito I, Kohara M (2011) Conditional gene expression in hepatitis C virus transgenic mice without induction of severe liver injury using a non-inflammatory Cre-expressing adenovirus. Virus Res 160:89–97. doi: 10.1016/j.virusres.2011.05.019 CrossRefPubMedGoogle Scholar
  34. Choo QL, Kuo G, Ralston R, Weiner A, Chien D, Van Nest G, Han J, Berger K, Thudium K, Kuo C et al (1994) Vaccination of chimpanzees against infection by the hepatitis C virus. Proc Natl Acad Sci U S A 91:1294–1298PubMedPubMedCentralCrossRefGoogle Scholar
  35. Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M (1989) Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244:359–362PubMedCrossRefGoogle Scholar
  36. Clark AJ, Iwobi M, Cui W, Crompton M, Harold G, Hobbs S, Kamalati T, Knox R, Neil C, Yull F, Gusterson B (1997) Selective cell ablation in transgenic mice expression E. coli nitroreductase. Gene Ther 4:101–110PubMedCrossRefGoogle Scholar
  37. Cooper S, Erickson AL, Adams EJ, Kansopon J, Weiner AJ, Chien DY, Houghton M, Parham P, Walker CM (1999) Analysis of a successful immune response against hepatitis C virus. Immunity 10:439–449PubMedCrossRefGoogle Scholar
  38. Danner R, Chaudhari SN, Rosenberger J, Surls J, Richie TL, Brumeanu TD, Casares S (2011) Expression of HLA class II molecules in humanized NOD.Rag1KO.IL2RgcKO mice is critical for development and function of human T and B cells. PLoS One 6: e19826. doi:  10.1371/journal.pone.0019826 PONE-D-10-6080[pii]
  39. Deinhardt F, Holmes AW, Capps RB, Popper H (1967) Studies on the transmission of human viral hepatitis to marmoset monkeys. I. Transmission of disease, serial passages, and description of liver lesions. J Exp Med 125:673–688PubMedPubMedCentralCrossRefGoogle Scholar
  40. Denton PW, Garcia JV (2011) Humanized mouse models of HIV infection. AIDS Rev 13:135–148PubMedPubMedCentralGoogle Scholar
  41. Desai MM, Gong B, Chan T, Davey RA, Soong L, Kolokoltsov AA, Sun J (2011) Differential, type I interferon-mediated autophagic trafficking of hepatitis C virus proteins in mouse liver. Gastroenterology 141: 674–685, 685 e1-6. doi: 10.1053/j.gastro.2011.04.060
  42. Ding J, Yannam GR, Roy-Chowdhury N, Hidvegi T, Basma H, Rennard SI, Wong RJ, Avsar Y, Guha C, Perlmutter DH, Fox IJ, Roy-Chowdhury J (2011) Spontaneous hepatic repopulation in transgenic mice expressing mutant human alpha1-antitrypsin by wild-type donor hepatocytes. J Clin Invest 121:1930–1934. doi: 10.1172/JCI45260 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Disson O, Haouzi D, Desagher S, Loesch K, Hahne M, Kremer EJ, Jacquet C, Lemon SM, Hibner U, Lerat H (2004) Impaired clearance of virus-infected hepatocytes in transgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology 126:859–872. doi:S0016508503020183
  44. Dorner M, Horwitz JA, Robbins JB, Barry WT, Feng Q, Mu K, Jones CT, Schoggins JW, Catanese MT, Burton DR, Law M, Rice CM, Ploss A (2011) A genetically humanized mouse model for hepatitis C virus infection. Nature 474:208–211. doi: 10.1038/nature10168 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Drabek D, Guy J, Craig R, Grosveld F (1997) The expression of bacterial nitroreductase in transgenic mice results in specific cell killing by the prodrug CB1954. Gene Ther 4:93–100. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  46. Edlin BR (2011) Perspective: test and treat this silent killer. Nature 474:S18–S19. doi: 10.1038/474S18a CrossRefPubMedPubMedCentralGoogle Scholar
  47. Eren R, Landstein D, Terkieltaub D, Nussbaum O, Zauberman A, Ben-Porath J, Gopher J, Buchnick R, Kovjazin R, Rosenthal-Galili Z, Aviel S, Ilan E, Shoshany Y, Neville L, Waisman T, Ben-Moshe O, Kischitsky A, Foung SK, Keck ZY, Pappo O, Eid A, Jurim O, Zamir G, Galun E, Dagan S (2006) Preclinical evaluation of two neutralizing human monoclonal antibodies against hepatitis C virus (HCV): a potential treatment to prevent HCV reinfection in liver transplant patients. J Virol 80:2654–2664. doi: 10.1128/JVI.80.6.2654-2664.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Erickson AL, Kimura Y, Igarashi S, Eichelberger J, Houghton M, Sidney J, McKinney D, Sette A, Hughes AL, Walker CM (2001) The outcome of hepatitis C virus infection is predicted by escape mutations in epitopes targeted by cytotoxic T lymphocytes. Immunity 15:883–895PubMedCrossRefGoogle Scholar
  49. Ernst E, Schonig K, Bugert JJ, Blaker H, Pfaff E, Stremmel W, Encke J (2007) Generation of inducible hepatitis C virus transgenic mouse lines. J Med Virol 79:1103–1112. doi: 10.1002/jmv.20911 CrossRefPubMedGoogle Scholar
  50. Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wolk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM (2007) Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446:801–805. doi: 10.1038/nature05654 CrossRefPubMedGoogle Scholar
  51. Farci P, Alter HJ, Govindarajan S, Wong DC, Engle R, Lesniewski RR, Mushahwar IK, Desai SM, Miller RH, Ogata N et al (1992) Lack of protective immunity against reinfection with hepatitis C virus. Science 258:135–140PubMedCrossRefGoogle Scholar
  52. Felmer R, Cui W, Clark AJ (2002) Inducible ablation of adipocytes in adult transgenic mice expressing the E. coli nitroreductase gene. J Endocrinol 175:487–498PubMedCrossRefGoogle Scholar
  53. Flint M, von Hahn T, Zhang J, Farquhar M, Jones CT, Balfe P, Rice CM, McKeating JA (2006) Diverse CD81 proteins support hepatitis C virus infection. J Virol 80:11331–11342. doi: 10.1128/JVI.00104-06 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Folgori A, Capone S, Ruggeri L, Meola A, Sporeno E, Ercole BB, Pezzanera M, Tafi R, Arcuri M, Fattori E, Lahm A, Luzzago A, Vitelli A, Colloca S, Cortese R, Nicosia A (2006) A T-cell HCV vaccine eliciting effective immunity against heterologous virus challenge in chimpanzees. Nat Med 12:190–197. doi: 10.1038/nm1353 CrossRefPubMedGoogle Scholar
  55. Forns X, Bukh J, Purcell RH (2002) The challenge of developing a vaccine against hepatitis C virus. J Hepatol 37:684–695. doi:S0168827802003082
  56. Frelin L, Brenndorfer ED, Ahlen G, Weiland M, Hultgren C, Alheim M, Glaumann H, Rozell B, Milich DR, Bode JG, Sallberg M (2006) The hepatitis C virus and immune evasion: non-structural 3/4A transgenic mice are resistant to lethal tumour necrosis factor alpha mediated liver disease. Gut 55:1475–1483. doi: 10.1136/gut.2005.085050 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Frentzen A, Huging K, Bitzegeio J, Friesland M, Haid S, Gentzsch J, Hoffmann M, Lindemann D, Zimmer G, Zielecki F, Weber F, Steinmann E, Pietschmann T (2011) Completion of hepatitis C virus replication cycle in heterokaryons excludes dominant restrictions in human non-liver and mouse liver cell lines. PLoS Pathog 7:e1002029. doi: 10.1371/journal.ppat.1002029 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Furutani T, Hino K, Okuda M, Gondo T, Nishina S, Kitase A, Korenaga M, Xiao SY, Weinman SA, Lemon SM, Sakaida I, Okita K (2006) Hepatic iron overload induces hepatocellular carcinoma in transgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology 130:2087–2098. doi: 10.1053/j.gastro.2006.02.060 CrossRefPubMedGoogle Scholar
  59. Garson JA, Whitby K, Watkins P, Morgan AJ (1997) Lack of susceptibility of the cottontop tamarin to hepatitis C infection. J Med Virol 52:286–288. doi: 10.1002/(SICI)1096-9071(199707)52:3<286:AID-JMV9>3.0.CO;2-Z CrossRefPubMedGoogle Scholar
  60. Giang E, Dorner M, Prentoe JC, Dreux M, Evans MJ, Bukh J, Rice CM, Ploss A, Burton DR, Law M (2012) Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus. Proc Natl Acad Sci U S A 109:6205–6210. doi: 10.1073/pnas.1114927109 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Gimeno R, Weijer K, Voordouw A, Uittenbogaart CH, Legrand N, Alves NL, Wijnands E, Blom B, Spits H (2004) Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2-/- gammac-/- mice: functional inactivation of p53 in developing T cells. Blood 104:3886–3893. doi: 10.1182/blood-2004-02-0656 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Grakoui A, Shoukry NH, Woollard DJ, Han JH, Hanson HL, Ghrayeb J, Murthy KK, Rice CM, Walker CM (2003) HCV persistence and immune evasion in the absence of memory T cell help. Science 302: 659–662. doi:  10.1126/science.1088774 302/5645/659[pii]PubMedCrossRefGoogle Scholar
  63. Griffin S, Trowbridge R, Thommes P, Parry N, Rowlands D, Harris M, Bright H (2008) Chimeric GB virus B genomes containing hepatitis C virus p7 are infectious in vivo. J Hepatol 49:908–915. doi: 10.1016/j.jhep.2008.07.020 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Grompe M, al-Dhalimy M, Finegold M, Ou CN, Burlingame T, Kennaway NG, Soriano P (1993) Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev 7: 2298–2307PubMedCrossRefGoogle Scholar
  65. Grompe M, Lindstedt S, al-Dhalimy M, Kennaway NG, Papaconstantinou J, Torres-Ramos CA, Ou CN, Finegold M (1995) Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat Genet 10: 453–460. doi:  10.1038/ng0895-453 PubMedCrossRefGoogle Scholar
  66. Guitart A, Riezu-Boj JI, Elizalde E, Larrea E, Berasain C, Aldabe R, Civeira MP, Prieto J (2005) Hepatitis C virus infection of primary tupaia hepatocytes leads to selection of quasispecies variants, induction of interferon-stimulated genes and NF-kappaB nuclear translocation. J Gen Virol 86:3065–3074. doi: 10.1099/vir.0.81273-0 CrossRefPubMedGoogle Scholar
  67. Haqshenas G, Dong X, Netter H, Torresi J, Gowans EJ (2007) A chimeric GB virus B encoding the hepatitis C virus hypervariable region 1 is infectious in vivo. J Gen Virol 88:895–902. doi: 10.1099/vir.0.82467-0 CrossRefPubMedGoogle Scholar
  68. Hasegawa M, Kawai K, Mitsui T, Taniguchi K, Monnai M, Wakui M, Ito M, Suematsu M, Peltz G, Nakamura M, Suemizu H (2011) The reconstituted ‘humanized liver’ in TK-NOG mice is mature and functional. Biochem Biophys Res Commun 405:405–410. doi: 10.1016/j.bbrc.2011.01.042 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Hatziioannou T, Ambrose Z, Chung NP, Piatak M Jr, Yuan F, Trubey CM, Coalter V, Kiser R, Schneider D, Smedley J, Pung R, Gathuka M, Estes JD, Veazey RS, KewalRamani VN, Lifson JD, Bieniasz PD (2009) A macaque model of HIV-1 infection. Proc Natl Acad Sci USA 106:4425–4429. doi: 10.1073/pnas.0812587106 CrossRefPubMedGoogle Scholar
  70. Hatziioannou T, Princiotta M, Piatak M Jr, Yuan F, Zhang F, Lifson JD, Bieniasz PD (2006) Generation of simian-tropic HIV-1 by restriction factor evasion. Science 314:395. doi: 10.1126/science.1130994 CrossRefGoogle Scholar
  71. Heo J, Factor VM, Uren T, Takahama Y, Lee JS, Major M, Feinstone SM, Thorgeirsson SS (2006) Hepatic precursors derived from murine embryonic stem cells contribute to regeneration of injured liver. Hepatology 44:1478–1486. doi: 10.1002/hep.21441 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Higginbottom A, Quinn ER, Kuo CC, Flint M, Wilson LH, Bianchi E, Nicosia A, Monk PN, McKeating JA, Levy S (2000) Identification of amino acid residues in CD81 critical for interaction with hepatitis C virus envelope glycoprotein E2. J Virol 74:3642–3649PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hikosaka K, Noritake H, Kimura W, Sultana N, Sharkar MT, Tagawa Y, Uezato T, Kobayashi Y, Wakita T, Miura N (2011) Expression of human factors CD81, claudin-1, scavenger receptor, and occludin in mouse hepatocytes does not confer susceptibility to HCV entry. Biomed Res 32:143–150. doi:JST.JSTAGE/biomedres/32.143
  74. Hotta S, Evans CA (1956) Cultivation of mouse-adapted dengue virus (type 1) in rhesus monkey tissue culture. J Infect Dis 98:88–97PubMedCrossRefPubMedCentralGoogle Scholar
  75. Houghton M (2009) The long and winding road leading to the identification of the hepatitis C virus. J Hepatol 51:939–948. doi: 10.1016/j.jhep.2009.08.004 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Houghton M (2011) Prospects for prophylactic and therapeutic vaccines against the hepatitis C viruses. Immunol Rev 239:99–108. doi: 10.1111/j.1600-065X.2010.00977.x CrossRefPubMedPubMedCentralGoogle Scholar
  77. Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A, Corcuff E, Mortier E, Jacques Y, Spits H, Di Santo JP (2009) IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med 206:25–34. doi: 10.1084/jem.20082013 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Ilan E, Arazi J, Nussbaum O, Zauberman A, Eren R, Lubin I, Neville L, Ben-Moshe O, Kischitzky A, Litchi A, Margalit I, Gopher J, Mounir S, Cai W, Daudi N, Eid A, Jurim O, Czerniak A, Galun E, Dagan S (2002) The hepatitis C virus (HCV)-Trimera mouse: a model for evaluation of agents against HCV. J Infect Dis 185:153–161. doi: 10.1086/338266 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, Watanabe T, Akashi K, Shultz LD, Harada M (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor gamma chain(null) mice. Blood 106:1565–1573. doi: 10.1182/blood-2005-02-0516 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Jaiswal S, Pearson T, Friberg H, Shultz LD, Greiner DL, Rothman AL, Mathew A (2009) Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2rgammanull mice. PLoS ONE 4:e7251. doi: 10.1371/journal.pone.0007251 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Jeannot E, Boorman GA, Kosyk O, Bradford BU, Shymoniak S, Tumurbaatar B, Weinman SA, Melnyk SB, Tryndyak V, Pogribny IP, Rusyn I (2012) Increased incidence of aflatoxin B1-induced liver tumors in hepatitis virus C transgenic mice. Int J Cancer 130:1347–1356. doi: 10.1002/ijc.26140 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Jia ZS, Du DW, Lei YF, Wei X, Yin W, Ma L, Lian JQ, Wang PZ, Li D, Zhou YX (2008) Scavenger receptor class B type I mediates cell entry of hepatitis C virus. J Int Med Res 36:1319–1325PubMedCrossRefPubMedCentralGoogle Scholar
  83. Kamegaya Y, Hiasa Y, Zukerberg L, Fowler N, Blackard JT, Lin W, Choe WH, Schmidt EV, Chung RT (2005) Hepatitis C virus acts as a tumor accelerator by blocking apoptosis in a mouse model of hepatocarcinogenesis. Hepatology 41:660–667. doi: 10.1002/hep.20621 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Kamiya N, Iwao E, Hiraga N, Tsuge M, Imamura M, Takahashi S, Miyoshi S, Tateno C, Yoshizato K, Chayama K (2010) Practical evaluation of a mouse with chimeric human liver model for hepatitis C virus infection using an NS3-4A protease inhibitor. J Gen Virol 91:1668–1677. doi: 10.1099/vir.0.019315-0 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Kanda T, Steele R, Ray R, Ray RB (2009) Inhibition of intrahepatic gamma interferon production by hepatitis C virus nonstructural protein 5A in transgenic mice. J Virol 83:8463–8469. doi: 10.1128/JVI.00751-09 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Kapoor A, Simmonds P, Gerold G, Qaisar N, Jain K, Henriquez JA, Firth C, Hirschberg DL, Rice CM, Shields S, Lipkin WI (2011) Characterization of a canine homolog of hepatitis C virus. Proc Natl Acad Sci U S A 108:11608–11613. doi: 10.1073/pnas.1101794108 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Karayiannis P, Petrovic LM, Fry M, Moore D, Enticott M, McGarvey MJ, Scheuer PJ, Thomas HC (1989) Studies of GB hepatitis agent in tamarins. Hepatology 9:186–192. doi:S0270913989000297
  88. Kneteman NM, Howe AY, Gao T, Lewis J, Pevear D, Lund G, Douglas D, Mercer DF, Tyrrell DL, Immermann F, Chaudhary I, Speth J, Villano SA, O’Connell J, Collett M (2009) HCV796: A selective nonstructural protein 5B polymerase inhibitor with potent anti-hepatitis C virus activity in vitro, in mice with chimeric human livers, and in humans infected with hepatitis C virus. Hepatology 49:745–752. doi: 10.1002/hep.22717 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Kolykhalov AA, Agapov EV, Blight KJ, Mihalik K, Feinstone SM, Rice CM (1997) Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277:570–574PubMedCrossRefPubMedCentralGoogle Scholar
  90. Koutsoudakis G, Kaul A, Steinmann E, Kallis S, Lohmann V, Pietschmann T, Bartenschlager R (2006) Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses. J Virol 80:5308–5320. doi: 10.1128/JVI.02460-05 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Kremsdorf D, Brezillon N (2007) New animal models for hepatitis C viral infection and pathogenesis studies. World J Gastroenterol: WJG 13:2427–2435PubMedCrossRefGoogle Scholar
  92. Kriegs M, Burckstummer T, Himmelsbach K, Bruns M, Frelin L, Ahlen G, Sallberg M, Hildt E (2009) The hepatitis C virus non-structural NS5A protein impairs both the innate and adaptive hepatic immune response in vivo. J Biol Chem 284:28343–28351. doi: 10.1074/jbc.M109.038877 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Lacek K, Vercauteren K, Grzyb K, Naddeo M, Verhoye L, Slowikowski MP, Fafi-Kremer S, Patel AH, Baumert TF, Folgori A, Leroux-Roels G, Cortese R, Meuleman P, Nicosia A (2012) Novel human SR-BI antibodies prevent infection and dissemination of HCV in vitro and in humanized mice. J Hepatol. doi: 10.1016/j.jhep.2012.02.018 CrossRefPubMedGoogle Scholar
  94. Lanford RE, Chavez D, Notvall L, Brasky KM (2003) Comparison of tamarins and marmosets as hosts for GBV-B infections and the effect of immunosuppression on duration of viremia. Virology 311:72–80. doi:S0042682203001934
  95. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Orum H (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201. doi: 10.1126/science.1178178 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Lecuit M, Dramsi S, Gottardi C, Fedor-Chaiken M, Gumbiner B, Cossart P (1999) A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J 18:3956–3963. doi: 10.1093/emboj/18.14.3956 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Legrand N, Huntington ND, Nagasawa M, Bakker AQ, Schotte R, Strick-Marchand H, de Geus SJ, Pouw SM, Bohne M, Voordouw A, Weijer K, Di Santo JP, Spits H (2011) Functional CD47/signal regulatory protein alpha (SIRP(alpha)) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc Natl Acad Sci U S A 108:13224–13229. doi: 10.1073/pnas.1101398108 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Lerat H, Kammoun HL, Hainault I, Merour E, Higgs MR, Callens C, Lemon SM, Foufelle F, Pawlotsky JM (2009) Hepatitis C virus proteins induce lipogenesis and defective triglyceride secretion in transgenic mice. J Biol Chem 284:33466–33474. doi: 10.1074/jbc.M109.019810 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Li K, Foy E, Ferreon JC, Nakamura M, Ferreon AC, Ikeda M, Ray SC, Gale M Jr, Lemon SM (2005) Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci U S A 102:2992–2997. doi: 10.1073/pnas.0408824102 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Libby SJ, Brehm MA, Greiner DL, Shultz LD, McClelland M, Smith KD, Cookson BT, Karlinsey JE, Kinkel TL, Porwollik S, Canals R, Cummings LA, Fang FC (2010) Humanized nonobese diabetic-scid IL2rgammanull mice are susceptible to lethal Salmonella Typhi infection. Proc Natl Acad Sci U S A 107:15589–15594. doi: 10.1073/pnas.1005566107 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Lin LT, Noyce RS, Pham TN, Wilson JA, Sisson GR, Michalak TI, Mossman KL, Richardson CD (2010) Replication of subgenomic hepatitis C virus replicons in mouse fibroblasts is facilitated by deletion of interferon regulatory factor 3 and expression of liver-specific microRNA 122. J Virol 84:9170–9180. doi: 10.1128/JVI.00559-10 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Lindenbach BD, Meuleman P, Ploss A, Vanwolleghem T, Syder AJ, McKeating JA, Lanford RE, Feinstone SM, Major ME, Leroux-Roels G, Rice CM (2006) Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc Natl Acad Sci U S A 103:3805–3809. doi: 10.1073/pnas.0511218103 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Liu S, Yang W, Shen L, Turner JR, Coyne CB, Wang T (2009) Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. J Virol 83:2011–2014. doi: 10.1128/JVI.01888-08 CrossRefPubMedGoogle Scholar
  104. Lohmann V, Korner F, Koch J, Herian U, Theilmann L, Bartenschlager R (1999) Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285:110–113. doi:7638
  105. Long G, Hiet MS, Windisch MP, Lee JY, Lohmann V, Bartenschlager R (2011) Mouse hepatic cells support assembly of infectious hepatitis C virus particles. Gastroenterology 141:1057–1066. doi: 10.1053/j.gastro.2011.06.010 CrossRefPubMedGoogle Scholar
  106. Luciw PA, Pratt-Lowe E, Shaw KE, Levy JA, Cheng-Mayer C (1995) Persistent infection of rhesus macaques with T-cell-line-tropic and macrophage-tropic clones of simian/human immunodeficiency viruses (SHIV). Proc Natl Acad Sci U S A 92:7490–7494PubMedPubMedCentralCrossRefGoogle Scholar
  107. Lupberger J, Zeisel MB, Xiao F, Thumann C, Fofana I, Zona L, Davis C, Mee CJ, Turek M, Gorke S, Royer C, Fischer B, Zahid MN, Lavillette D, Fresquet J, Cosset FL, Rothenberg SM, Pietschmann T, Patel AH, Pessaux P, Doffoel M, Raffelsberger W, Poch O, McKeating JA, Brino L, Baumert TF (2011) EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med 17:589–595. doi: 10.1038/nm.2341 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Major ME, Dahari H, Mihalik K, Puig M, Rice CM, Neumann AU, Feinstone SM (2004) Hepatitis C virus kinetics and host responses associated with disease and outcome of infection in chimpanzees. Hepatology 39:1709–1720. doi: 10.1002/hep.20239 CrossRefPubMedGoogle Scholar
  109. Majumder M, Steele R, Ghosh AK, Zhou XY, Thornburg L, Ray R, Phillips NJ, Ray RB (2003) Expression of hepatitis C virus non-structural 5A protein in the liver of transgenic mice. FEBS Lett 555:528–532PubMedCrossRefGoogle Scholar
  110. Manz MG (2007) Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity 26:537–541. doi: 10.1016/j.immuni.2007.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Martin A, Bodola F, Sangar DV, Goettge K, Popov V, Rijnbrand R, Lanford RE, Lemon SM (2003) Chronic hepatitis associated with GB virus B persistence in a tamarin after intrahepatic inoculation of synthetic viral RNA. Proc Natl Acad Sci U S A 100:9962–9967. doi: 10.1073/pnas.1731505100 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Marukian S, Andrus L, Sheahan TP, Jones CT, Charles ED, Ploss A, Rice CM, Dustin LB (2011) Hepatitis C virus induces interferon-lambda and interferon-stimulated genes in primary liver cultures. Hepatology 54:1913–1923. doi: 10.1002/hep.24580 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Masciopinto F, Freer G, Burgio VL, Levy S, Galli-Stampino L, Bendinelli M, Houghton M, Abrignani S, Uematsu Y (2002) Expression of human CD81 in transgenic mice does not confer susceptibility to hepatitis C virus infection. Virology 304:187–196. doi:S0042682202916314
  114. McCaffrey AP, Ohashi K, Meuse L, Shen S, Lancaster AM, Lukavsky PJ, Sarnow P, Kay MA (2002) Determinants of hepatitis C translational initiation in vitro, in cultured cells and mice. Mol Ther 5:676–684. doi: 10.1006/mthe.2002.0600 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, Wege AK, Haase AT, Garcia JV (2006) Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12:1316–1322. doi: 10.1038/nm1431 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Mercer DF, Schiller DE, Elliott JF, Douglas DN, Hao C, Rinfret A, Addison WR, Fischer KP, Churchill TA, Lakey JR, Tyrrell DL, Kneteman NM (2001) Hepatitis C virus replication in mice with chimeric human livers. Nat Med 7:927–933. doi: 10.1038/90968 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Meuleman P, Catanese MT, Verhoye L, Desombere I, Farhoudi A, Jones CT, Sheahan T, Grzyb K, Cortese R, Rice CM, Leroux-Roels G, Nicosia A (2012) A human monoclonal antibody targeting scavenger receptor class B type I precludes hepatitis C virus infection and viral spread in vitro and in vivo. Hepatology 55:364–372. doi: 10.1002/hep.24692 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167–1172. doi: 10.1038/nature04193 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Michta ML, Hopcraft SE, Narbus CM, Kratovac Z, Israelow B, Sourisseau M, Evans MJ (2010) Species-specific regions of occludin required by hepatitis C virus for cell entry. J Virol 84:11696–11708. doi: 10.1128/JVI.01555-10 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Molina S, Castet V, Fournier-Wirth C, Pichard-Garcia L, Avner R, Harats D, Roitelman J, Barbaras R, Graber P, Ghersa P, Smolarsky M, Funaro A, Malavasi F, Larrey D, Coste J, Fabre JM, Sa-Cunha A, Maurel P (2007) The low-density lipoprotein receptor plays a role in the infection of primary human hepatocytes by hepatitis C virus. J Hepatol 46:411–419. doi: 10.1016/j.jhep.2006.09.024 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Monazahian M, Bohme I, Bonk S, Koch A, Scholz C, Grethe S, Thomssen R (1999) Low density lipoprotein receptor as a candidate receptor for hepatitis C virus. J Med Virol 57:223–229PubMedCrossRefPubMedCentralGoogle Scholar
  122. Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, Matsuura Y, Kimura S, Miyamura T, Koike K (1998) The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 4:1065–1067. doi: 10.1038/2053 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Moriya K, Yotsuyanagi H, Shintani Y, Fujie H, Ishibashi K, Matsuura Y, Miyamura T, Koike K (1997) Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol 78(Pt 7):1527–1531PubMedCrossRefPubMedCentralGoogle Scholar
  124. Muerhoff AS, Leary TP, Simons JN, Pilot-Matias TJ, Dawson GJ, Erker JC, Chalmers ML, Schlauder GG, Desai SM, Mushahwar IK (1995) Genomic organization of GB viruses A and B: two new members of the Flaviviridae associated with GB agent hepatitis. J Virol 69:5621–5630PubMedPubMedCentralCrossRefGoogle Scholar
  125. Murray CL, Rice CM (2011) Turning hepatitis C into a real virus. Annu Rev Microbiol 65:307–327. doi: 10.1146/annurev-micro-090110-102954 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Naas T, Ghorbani M, Alvarez-Maya I, Lapner M, Kothary R, De Repentigny Y, Gomes S, Babiuk L, Giulivi A, Soare C, Azizi A, Diaz-Mitoma F (2005) Characterization of liver histopathology in a transgenic mouse model expressing genotype 1a hepatitis C virus core and envelope proteins 1 and 2. J Gen Virol 86:2185–2196. doi: 10.1099/vir.0.80969-0 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Naas T, Ghorbani M, Soare C, Scherling N, Muller R, Ghorbani P, Diaz-Mitoma F (2010) Adoptive transfer of splenocytes to study cell-mediated immune responses in hepatitis C infection using HCV transgenic mice. Comp Hepatol 9:7. doi: 10.1186/1476-5926-9-7 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Nicolini FE, Cashman JD, Hogge DE, Humphries RK, Eaves CJ (2004) NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia 18:341–347. doi: 10.1038/sj.leu.2403222 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Ohara E, Hiraga N, Imamura M, Iwao E, Kamiya N, Yamada I, Kono T, Onishi M, Hirata D, Mitsui F, Kawaoka T, Tsuge M, Takahashi S, Abe H, Hayes CN, Ochi H, Tateno C, Yoshizato K, Tanaka S, Chayama K (2011) Elimination of hepatitis C virus by short term NS3-4A and NS5B inhibitor combination therapy in human hepatocyte chimeric mice. J Hepatol 54:872–878. doi: 10.1016/j.jhep.2010.08.033 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Olsen DB, Davies ME, Handt L, Koeplinger K, Zhang NR, Ludmerer SW, Graham D, Liverton N, MacCoss M, Hazuda D, Carroll SS (2011) Sustained viral response in a hepatitis C virus-infected chimpanzee via a combination of direct-acting antiviral agents. Antimicrob Agents Chemother 55:937–939. doi: 10.1128/AAC.00990-10 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Owen DM, Huang H, Ye J, Gale M Jr (2009) Apolipoprotein E on hepatitis C virion facilitates infection through interaction with low-density lipoprotein receptor. Virology 394:99–108. doi: 10.1016/j.virol.2009.08.037 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Pasquinelli C, Shoenberger JM, Chung J, Chang KM, Guidotti LG, Selby M, Berger K, Lesniewski R, Houghton M, Chisari FV (1997) Hepatitis C virus core and E2 protein expression in transgenic mice. Hepatology 25:719–727. doi: 10.1002/hep.510250338 CrossRefPubMedGoogle Scholar
  133. Patel MR, Loo YM, Horner SM, Gale M, Jr., Malik HS (2012) Convergent evolution of escape from hepaciviral antagonism in primates. PLoS Biol 10: e1001282. doi:  10.1371/journal.pbio.1001282 PBIOLOGY-D-11-03907[pii]
  134. Pearson T, Shultz LD, Miller D, King M, Laning J, Fodor W, Cuthbert A, Burzenski L, Gott B, Lyons B, Foreman O, Rossini AA, Greiner DL (2008) Non-obese diabetic-recombination activating gene-1 (NOD-Rag1(null)) interleukin (IL)-2 receptor common gamma chain (IL2r gamma(null)) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol 154:270–284. doi: 10.1111/J.1365-2249.2008.03753.X CrossRefPubMedPubMedCentralGoogle Scholar
  135. Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, Abrignani S (1998) Binding of hepatitis C virus to CD81. Science 282:938–941PubMedCrossRefGoogle Scholar
  136. Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, de Jong YP, Rice CM (2009) Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457:882–886. doi: 10.1038/nature07684 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Prince AM, Brotman B, Huima T, Pascual D, Jaffery M, Inchauspe G (1992) Immunity in hepatitis C infection. J Infect Dis 165:438–443PubMedCrossRefGoogle Scholar
  138. Ren RB, Costantini F, Gorgacz EJ, Lee JJ, Racaniello VR (1990) Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell 63:353–362. doi:0092-8674(90)90168-E
  139. Rhim JA, Sandgren EP, Degen JL, Palmiter RD, Brinster RL (1994) Replacement of diseased mouse liver by hepatic cell transplantation. Science 263:1149–1152PubMedCrossRefGoogle Scholar
  140. Rijnbrand R, Yang Y, Beales L, Bodola F, Goettge K, Cohen L, Lanford RE, Lemon SM, Martin A (2005) A chimeric GB virus B with 5′ nontranslated RNA sequence from hepatitis C virus causes hepatitis in tamarins. Hepatology 41:986–994. doi: 10.1002/hep.20656 CrossRefPubMedGoogle Scholar
  141. Rongvaux A, Willinger T, Takizawa H, Rathinam C, Auerbach W, Murphy AJ, Valenzuela DM, Yancopoulos GD, Eynon EE, Stevens S, Manz MG, Flavell RA (2011) Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci U S A 108:2378–2383. doi: 10.1073/pnas.1019524108 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Sainz B Jr, Barretto N, Martin DN, Hiraga N, Imamura M, Hussain S, Marsh KA, Yu X, Chayama K, Alrefai WA, Uprichard SL (2012) Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med 18:281–285. doi: 10.1038/nm.2581 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Sandgren EP, Palmiter RD, Heckel JL, Daugherty CC, Brinster RL, Degen JL (1991) Complete hepatic regeneration after somatic deletion of an albumin-plasminogen activator transgene. Cell 66:245–256. doi:0092-8674(91)90615-6
  144. Satoh K, Takahashi H, Matsuda C, Tanaka T, Miyasaka M, Zeniya M, Kohara M (2010) Natural killer cells target HCV core proteins during the innate immune response in HCV transgenic mice. J Med Virol 82:1545–1553. doi: 10.1002/jmv.21859 CrossRefPubMedGoogle Scholar
  145. Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, Filocamo G, Traboni C, Nicosia A, Cortese R, Vitelli A (2002) The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21:5017–5025PubMedPubMedCentralCrossRefGoogle Scholar
  146. Schaluder GG, Dawson GJ, Simons JN, Pilot-Matias TJ, Gutierrez RA, Heynen CA, Knigge MF, Kurpiewski GS, Buijk SL, Leary TP et al (1995) Molecular and serologic analysis in the transmission of the GB hepatitis agents. J Med Virol 46:81–90PubMedCrossRefGoogle Scholar
  147. Schwartz RE, Trehan K, Andrus L, Sheahan TP, Ploss A, Duncan SA, Rice CM, Bhatia SN (2012) Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc Natl Acad Sci U S A 109:2544–2548. doi: 10.1073/pnas.1121400109 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Sheahan T, Jones CT, Ploss A (2010) Advances and challenges in studying hepatitis C virus in its native environment. Expert Rev Gastroenterol Hepatol 4:541–550. doi: 10.1586/egh.10.53 CrossRefPubMedGoogle Scholar
  149. Shoukry NH, Grakoui A, Houghton M, Chien DY, Ghrayeb J, Reimann KA, Walker CM (2003) Memory CD8+ T cells are required for protection from persistent hepatitis C virus infection. J Exp Med 197:1645–1655. doi: 10.1084/jem.20030239 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7:118–130. doi: 10.1038/nri2017 CrossRefPubMedGoogle Scholar
  151. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, Greiner DL, Handgretinger R (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174:6477–6489. doi:174/10/6477
  152. Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M, Doi T, Sone A, Suzuki N, Fujiwara H, Yasukawa M, Ishikawa F (2010) Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci U S A 107: 13022–13027. doi:  10.1073/pnas.1000475107 PubMedPubMedCentralCrossRefGoogle Scholar
  153. Simons JN, Pilot-Matias TJ, Leary TP, Dawson GJ, Desai SM, Schlauder GG, Muerhoff AS, Erker JC, Buijk SL, Chalmers ML et al (1995) Identification of two flavivirus-like genomes in the GB hepatitis agent. Proc Natl Acad Sci U S A 92:3401–3405PubMedPubMedCentralCrossRefGoogle Scholar
  154. Sithebe NP, Kew MC, Mphahlele MJ, Paterson AC, Lecatsas G, Kramvis A, de Klerk W (2002) Lack of susceptibility of Chacma baboons (Papio ursinus orientalis) to hepatitis C virus infection. J Med Virol 66:468–471. doi: 10.1002/jmv.2167 CrossRefPubMedGoogle Scholar
  155. Song X, Guo Y, Duo S, Che J, Wu C, Ochiya T, Ding M, Deng H (2009) A mouse model of inducible liver injury caused by tet-on regulated urokinase for studies of hepatocyte transplantation. Am J Pathol 175:1975–1983. doi: 10.2353/ajpath.2009.090349 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Steenbergen RH, Joyce MA, Lund G, Lewis J, Chen R, Barsby N, Douglas D, Zhu LF, Tyrrell DL, Kneteman NM (2010) Lipoprotein profiles in SCID/uPA mice transplanted with human hepatocytes become human-like and correlate with HCV infection success. Am J Physiol Gastrointest Liver Physiol 299:G844–G854. doi: 10.1152/ajpgi.00200.2010 CrossRefPubMedGoogle Scholar
  157. Strowig T, Gurer C, Ploss A, Liu YF, Arrey F, Sashihara J, Koo G, Rice CM, Young JW, Chadburn A, Cohen JI, Munz C (2009) Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med 206:1423–1434. doi: 10.1084/jem.20081720 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Strowig T, Rongvaux A, Rathinam C, Takizawa H, Borsotti C, Philbrick W, Eynon EE, Manz MG, Flavell RA (2011) Transgenic expression of human signal regulatory protein alpha in Rag2-/-gamma(c)-/- mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci U S A 108:13218–13223. doi: 10.1073/pnas.1109769108 CrossRefPubMedPubMedCentralGoogle Scholar
  159. Suemizu H, Hasegawa M, Kawai K, Taniguchi K, Monnai M, Wakui M, Suematsu M, Ito M, Peltz G, Nakamura M (2008) Establishment of a humanized model of liver using NOD/Shi-scid IL2Rgnull mice. Biochem Biophys Res Commun 377:248–252. doi: 10.1016/j.bbrc.2008.09.124 CrossRefPubMedGoogle Scholar
  160. Tabor E, Gerety RJ, Drucker JA, Seeff LB, Hoofnagle JH, Jackson DR, April M, Barker LF, Pineda-Tamondong G (1978) Transmission of non-A, non-B hepatitis from man to chimpanzee. Lancet 1:463–466PubMedCrossRefGoogle Scholar
  161. Takaku S, Nakagawa Y, Shimizu M, Norose Y, Maruyama I, Wakita T, Takano T, Kohara M, Takahashi H (2003) Induction of hepatic injury by hepatitis C virus-specific CD8+ murine cytotoxic T lymphocytes in transgenic mice expressing the viral structural genes. Biochem Biophys Res Commun 301:330–337. doi:S0006291X02030188
  162. Takenaka K, Prasolava TK, Wang JC, Mortin-Toth SM, Khalouei S, Gan OI, Dick JE, Danska JS (2007) Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol 8:1313–1323. doi: 10.1038/ni1527 CrossRefPubMedGoogle Scholar
  163. Tanaka N, Moriya K, Kiyosawa K, Koike K, Aoyama T (2008) Hepatitis C virus core protein induces spontaneous and persistent activation of peroxisome proliferator-activated receptor alpha in transgenic mice: implications for HCV-associated hepatocarcinogenesis. Int J Cancer 122:124–131. doi: 10.1002/ijc.23056 CrossRefPubMedGoogle Scholar
  164. Thimme R, Bukh J, Spangenberg HC, Wieland S, Pemberton J, Steiger C, Govindarajan S, Purcell RH, Chisari FV (2002) Viral and immunological determinants of hepatitis C virus clearance, persistence, and disease. Proc Natl Acad Sci USA 99:15661–15668. doi: 10.1073/pnas.202608299 CrossRefPubMedGoogle Scholar
  165. Thomson M, Nascimbeni M, Gonzales S, Murthy KK, Rehermann B, Liang TJ (2001) Emergence of a distinct pattern of viral mutations in chimpanzees infected with a homogeneous inoculum of hepatitis C virus. Gastroenterology 121:1226–1233PubMedCrossRefGoogle Scholar
  166. Tian ZF, Shen H, Fu XH, Chen YC, Blum HE, Baumert TF, Zhao XP (2009) Interaction of hepatitis C virus envelope glycoprotein E2 with the large extracellular loop of tupaia CD81. World J Gastroenterol 15:240–244PubMedPubMedCentralCrossRefGoogle Scholar
  167. Tong Y, Zhu Y, Xia X, Liu Y, Feng Y, Hua X, Chen Z, Ding H, Gao L, Wang Y, Feitelson MA, Zhao P, Qi ZT (2011) Tupaia CD81, SR-BI, claudin-1, and occludin support hepatitis C virus infection. J Virol 85:2793–2802. doi: 10.1128/JVI.01818-10 CrossRefPubMedGoogle Scholar
  168. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304: 104–107. doi:  10.1126/science.1093933 304/5667/104[pii]PubMedCrossRefGoogle Scholar
  169. Tsukiyama-Kohara K, Sekiguchi S, Kasama Y, Salem NE, Machida K, Kohara M (2011) Hepatitis C virus-related lymphomagenesis in a mouse model. ISRN Hematol 2011:167501. doi: 10.5402/2011/167501 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Tumurbaatar B, Sun Y, Chan T, Sun J (2007) Cre-estrogen receptor-mediated hepatitis C virus structural protein expression in mice. J Virol Methods 146:5–13. doi: 10.1016/j.jviromet.2007.05.025 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Uprichard SL, Chung J, Chisari FV, Wakita T (2006) Replication of a hepatitis C virus replicon clone in mouse cells. Virol J 3:89. doi: 10.1186/1743-422X-3-89 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Vanwolleghem T, Bukh J, Meuleman P, Desombere I, Meunier JC, Alter H, Purcell RH, Leroux-Roels G (2008) Polyclonal immunoglobulins from a chronic hepatitis C virus patient protect human liver-chimeric mice from infection with a homologous hepatitis C virus strain. Hepatology 47:1846–1855. doi: 10.1002/hep.22244 CrossRefPubMedGoogle Scholar
  173. Vanwolleghem T, Libbrecht L, Hansen BE, Desombere I, Roskams T, Meuleman P, Leroux-Roels G (2010) Factors determining successful engraftment of hepatocytes and susceptibility to hepatitis B and C virus infection in uPA-SCID mice. J Hepatol 53:468–476. doi: 10.1016/j.jhep.2010.03.024 CrossRefPubMedGoogle Scholar
  174. Waern JM, Yuan Q, Rudrich U, Becker PD, Schulze K, Strick-Marchand H, Huntington ND, Zacher BJ, Wursthorn K, Disanto JP, Guzman CA, Manns MP, Ott M, Bock M (2012) Ectopic expression of murine CD47 minimizes macrophage rejection of human hepatocyte xenografts in immunodeficient mice. Hepatology 56:1479–1488. doi: 10.1002/hep.25816 CrossRefPubMedGoogle Scholar
  175. Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, Murthy K, Habermann A, Krausslich HG, Mizokami M, Bartenschlager R, Liang TJ (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11:791–796. doi: 10.1038/nm1268 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Wang AG, Lee DS, Moon HB, Kim JM, Cho KH, Choi SH, Ha HL, Han YH, Kim DG, Hwang SB, Yu DY (2009) Non-structural 5A protein of hepatitis C virus induces a range of liver pathology in transgenic mice. J Pathol 219:253–262. doi: 10.1002/path.2592 CrossRefPubMedGoogle Scholar
  177. Wang AG, Moon HB, Kim JM, Hwang SB, Yu DY, Lee DS (2006) Expression of hepatitis C virus nonstructural 4B in transgenic mice. Exp Mol Med 38:241–246. doi:200606307
  178. Washburn ML, Bility MT, Zhang L, Kovalev GI, Buntzman A, Frelinger JA, Barry W, Ploss A, Rice CM, Su L (2011) A Humanized Mouse Model to Study Hepatitis C Virus Infection, Immune Response, and Liver Disease. Gastroenterology. doi: 10.1053/j.gastro.2011.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  179. Wegert M, La Monica N, Tripodi M, Adler G, Dikopoulos N (2009) Impaired interferon type I signalling in the liver modulates the hepatic acute phase response in hepatitis C virus transgenic mice. J Hepatol 51: 271–278. doi:  10.1016/j.jhep.2009.03.014 S0168-8278(09)00249-9[pii]PubMedCrossRefGoogle Scholar
  180. Willinger T, Rongvaux A, Strowig T, Manz MG, Flavell RA (2011) Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol 32: 321–327. doi:  10.1016/ S1471-4906(11)00072-X[pii]PubMedCrossRefGoogle Scholar
  181. Wu GY, Konishi M, Walton CM, Olive D, Hayashi K, Wu CH (2005) A novel immunocompetent rat model of HCV infection and hepatitis. Gastroenterology 128:1416–1423. doi:S0016508505003951
  182. Wu X, Robotham JM, Lee E, Dalton S, Kneteman NM, Gilbert DM, Tang H (2012) Productive hepatitis C virus infection of stem cell-derived hepatocytes reveals a critical transition to viral permissiveness during differentiation. PLoS Pathog 8: e1002617. doi:  10.1371/journal.ppat.1002617 PPATHOGENS-D-11-02669[pii]
  183. Xie ZC, Riezu-Boj JI, Lasarte JJ, Guillen J, Su JH, Civeira MP, Prieto J (1998) Transmission of hepatitis C virus infection to tree shrews. Virology 244:513–520. doi: 10.1006/viro.1998.9127 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Xu X, Chen H, Cao X, Ben K (2007) Efficient infection of tree shrew (Tupaia belangeri) with hepatitis C virus grown in cell culture or from patient plasma. J Gen Virol 88:2504–2512. doi: 10.1099/vir.0.82878-0 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Zhao X, Tang ZY, Klumpp B, Wolff-Vorbeck G, Barth H, Levy S, von Weizsacker F, Blum HE, Baumert TF (2002) Primary hepatocytes of Tupaia belangeri as a potential model for hepatitis C virus infection. J Clin Invest 109:221–232. doi: 10.1172/JCI13011 CrossRefPubMedPubMedCentralGoogle Scholar
  186. Zhu Q, Guo JT, Seeger C (2003) Replication of hepatitis C virus subgenomes in nonhepatic epithelial and mouse hepatoma cells. J Virol 77:9204–9210PubMedPubMedCentralCrossRefGoogle Scholar
  187. Zhu Q, Oei Y, Mendel DB, Garrett EN, Patawaran MB, Hollenbach PW, Aukerman SL, Weiner AJ (2006) Novel robust hepatitis C virus mouse efficacy model. Antimicrob Agents Chemother 50:3260–3268. doi: 10.1128/AAC.00413-06 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eva Billerbeck
    • 1
  • Ype de Jong
    • 1
    • 2
  • Marcus Dorner
    • 1
  • Cynthia de la Fuente
    • 1
  • Alexander Ploss
    • 1
    Email author
  1. 1.Laboratory of Virology and Infectious DiseaseCenter for the Study of Hepatitis C, The Rockefeller UniversityNew YorkUSA
  2. 2.Division of Gastroenterology and HepatologyCenter for the Study of Hepatitis C, Weill Cornell Medical CollegeNew YorkUSA

Personalised recommendations