Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 369))

Abstract

The major targets for direct-acting antivirals (DAAs) are the NS3/4A protease, the NS5A protein, and the NS5B polymerase. The latter enzyme offers several target sites: the catalytic domain for nucleoside/nucleotide analogs and different allosteric sites for non-nucleoside inhibitors. Two protease inhibitors have already been approved and more than 40 new NS3/4A, NS5A, or NS5B inhibitors are in development pipeline. Not only these agents can achieve very high cure rates when combined with PEG-IFN and RBV, but have also started to provide promising results when combined in IFN-free, all-oral combinations. In addition to the more canonical drug targets, new alternative viral targets for small molecule drug development are emerging, such as p7 or NS4B. Current research is focusing on defining the most efficacious DAA combination regimens, i.e., those which provide the highest rates of viral eradication, broadest spectrum of action, minimal or no clinical resistance, shortest treatment duration, and good tolerability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afdhal N, O’Brien C, Godofsky E et al (2007) Valopicitabine (NM283), alone or with peginterferon, compared to peg interferon/ribavirin (pegIFN/RBV) retreatment in patients with HCV-1 infection and prior non-response to pegIFN/RBV: one-year results. J Hepatol 46:S5

    Article  Google Scholar 

  • Agarwal A, Zhang B, Olek E et al (2012) Rapid and sharp decline in hepatitis C virus upon monotherapy with NS3 protease inhibitor, ACH-1625. Antivirus Therapy, in press. doi:10.3851/IMP2359

  • Aghemo A, Degasperi E, Colombo M (2012) Directly acting antivirals for the treatment of chronic hepatitis C: unresolved topics from registration trials. Digistive and liver disease, in press. doi:10.1016/j.dld.2012.05.002

  • Assis DN, Lim JK (2012) New pharmacotherapy for hepatitis C. Clin Pharmacol Ther 92:294–305

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu PL (2006) The discovery of finger loop inhibitors of the hepatitis C virus NS5B polymerase: status and prospects for novel HCV therapeutics. IDrugs 9:39–43

    CAS  PubMed  Google Scholar 

  • Beaulieu PL, Bos M, Cordingley MG et al (2012) Discovery of the first thumb pocket 1 NS5B polymerase inhibitor (BILB 1941) with demonstrated antiviral activity in patients chronically infected with genotype 1 hepatitis C virus (HCV). J Med Chem 55:7650–7666

    Article  CAS  PubMed  Google Scholar 

  • Belda O, Targett-Adams P (2012) Small molecule inhibitors of the hepatitis C virus-encoded NS5A protein. Virus Research, in press. doi:10.1016/j.virusres.2012.09.007

  • Benhamou Y, Moussalli J, Ratziu V et al (2009) Results of a proof-of-concept study (C210) of telaprevir monotherapy and in combination with peginterfern alfa-2a and ribavirin in treatment-naive genotype 4 HCV patients. J Hepatol 50(1):S6

    Article  Google Scholar 

  • Berger C, Romero-Brey I, Zayas M et al (2012) HCV NS5A inhibitors alter membranous web formation and reduce PI4P induction in cells expressing HCV non-structural proteins. In: Abstracts O23 of the 19th international symposium on hepatitis C virus and related viruses, Venice, Italy, 5–9 Octo 2012

    Google Scholar 

  • Berke JM, Vijgen L, Lachau-Durand S et al (2011) Antiviral activity and mode of action of TMC647078, a novel nucleoside inhibitor of the hepatitis C virus NS5B polymerase. Antimicrob Agents Chemother 55:3812–3820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brainard DM, Anderson MS, Petry A et al (2009) Safety and antiviral activity of NS5B polymerase inhibitor MK-3281, in treatment-naïve genotype 1a, 1b and 3 HCV-infected patients. Hepatology 50:1026A–1027A

    Google Scholar 

  • Brainard DM, Petry A, Van Dyck K et al (2010) Safety and antiviral activity of MK-5172, a novel HCV NS3/4A protease inhibitor with potent activity against known resistance mutants in genotype 1 and 3 HCV-infected patients. Hepatology 52(1):706A–707A

    Google Scholar 

  • Bressanelli S, Tomei L, Roussel A et al (1999) Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc Natl Acad Sci USA 96:13034–13039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryson PD, Cho NJ, Einav S et al (2010) A small molecule inhibits HCV replication and alters NS4B’s subcellular distribution. Antiviral Res 87:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrere-Kremer S, Montpellier-Pala C, Cocquerel L et al (2002) Subcellular localization and topology of the p7 polypeptide of hepatitis C virus. J Virol 76:3720–3730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll SS, Olsen DB (2006) Nucleoside analog inhibitors of hepatitis C virus replication. Infect Disord Drug Targets 6:17–29

    Article  CAS  PubMed  Google Scholar 

  • Carroll SS, Tomassini JE, Bosserman M et al (2003) Inhibition of hepatitis C virus RNA replication by 2′-modified nucleoside analogs. J Biol Chem 278:11979–11984

    Article  CAS  PubMed  Google Scholar 

  • Chang MH, Gordon LA, Fung HB (2012) Boceprevir: a protease inhibitor for the treatment of hepatitis C. Clin Ther 34:2021–2038

    Article  CAS  PubMed  Google Scholar 

  • Chatel-Chaix L, Germain MA, Gotte M, Lamarre D (2012) Direct-acting and host-targeting HCV inhibitors: current and future directions. Curr Opin Virol 2:588–598

    Article  CAS  PubMed  Google Scholar 

  • Chen SH, Tan SL (2005) Discovery of small-molecule inhibitors of HCV NS3-4A protease as potential therapeutic agents against HCV infection. Curr Med Chem 12:2317–2342

    Article  CAS  PubMed  Google Scholar 

  • Cho NJ, Dvory-Sobol H, Lee C et al (2010) Identification of a class of HCV inhibitors directed against the nonstructural protein NS4B. Sci Transl Med 2:15–16

    Article  CAS  Google Scholar 

  • Choong IC, Cory D, Glenn JS, Yang W (2010) Methods and compositions of treating a Flaviviridae family viral infection. WO/2010/107739

    Google Scholar 

  • Conte I, Giuliano C, Ercolani C et al (2009) Synthesis and SAR of piperazinyl-N-phenylbenzamides as inhibitors of hepatitis C virus RNA replication in cell culture. Bioorg Med Chem Lett 19:1779–1783

    Article  CAS  PubMed  Google Scholar 

  • Cooper C, Lawitz EJ, Ghali P et al (2009) Evaluation of VCH-759 monotherapy in hepatitis C infection. J Hepatol 51:39–46

    Article  CAS  PubMed  Google Scholar 

  • De Francesco R, Steinkuhler C (2000) Structure and function of the hepatitis C virus NS3-NS4A serine proteinase. Curr Top Microbiol Immunol 242:149–169

    PubMed  Google Scholar 

  • Delang L, Froeyen M, Herdewijn P, Neyts J (2012) Identification of a novel resistance mutation for benzimidazole inhibitors of the HCV RNA-dependent RNA polymerase. Antiviral Res 93:30–38

    Article  CAS  PubMed  Google Scholar 

  • Deltenre P, Henrion J, Canva V et al (2004) Evaluation of amantadine in chronic hepatitis C: a meta-analysis. J Hepatol 41:462–473

    Article  CAS  PubMed  Google Scholar 

  • Devogelaere B, Berke JM, Vijgen L et al (2012) TMC647055, a potent nonnucleoside hepatitis C virus NS5B polymerase inhibitor with cross-genotypic coverage. Antimicrob Agents Chemother 56:4676–4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Marco S, Volpari C, Tomei L et al (2005) Interdomain communication in hepatitis C virus polymerase abolished by small molecule inhibitors bound to a novel allosteric site. J Biol Chem 280:29765–29770

    Article  PubMed  CAS  Google Scholar 

  • Dvory-Sobol H, Wong KA, Ku KS et al (2012) Characterization of resistance to the protease inhibitor GS-9451 in hepatitis C virus-infected patients. Antimicrob Agents Chemother 56:5289–5295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards PD, Bernstein PR (1994) Synthetic inhibitors of elastase. Med Res Rev 14:127–194

    Article  CAS  PubMed  Google Scholar 

  • Einav S, Gerber D, Bryson PD et al (2008) Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis. Nat Biotechnol 26:1019–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Einav S, Sobol HD, Gehrig E, Glenn JS (2010) The hepatitis C virus (HCV) NS4B RNA binding inhibitor clemizole is highly synergistic with HCV protease inhibitors. J Infect Dis 202:65–74

    Article  CAS  PubMed  Google Scholar 

  • El Hage N, Luo G (2003) Replication of hepatitis C virus RNA occurs in a membrane-bound replication complex containing nonstructural viral proteins and RNA. J Gen Virol 84:2761–2769

    Article  PubMed  CAS  Google Scholar 

  • Erhardt A, Deterding K, Benhamou Y et al (2009) Safety, pharmacokinetics and antiviral effect of BILB 1941, a novel hepatitis C virus RNA polymerase inhibitor, after 5 days oral treatment. Antiviral Ther 14:23–32

    CAS  Google Scholar 

  • Everson GT, Sims KD, Rodriguez-Torres M et al (2012) An interferon-free, ribavirin-free 12 weeks regimen of daclatasvir (DCV), asunaprevir (ASV), and BMS-791325 yielded SVR4 of 94 % in treatment-naïve patients with genotype (GT) 1 chronic hepatitis C virus (HCV) infection. In: Abstracts LB-3 of the 63rd annual meeting of the american association for the study of liver diseases, Boston, Massachusetts, 9–13 Nov 2012

    Google Scholar 

  • Failla C, Tomei L, De Francesco R (1994) Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. J Virol 68:3753–3760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Failla C, Tomei L, De Francesco R (1995) An amino-terminal domain of the hepatitis C virus NS3 protease is essential for interaction with NS4A. J Virol 69:1769–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferenci P (2012) Treatment of chronic hepatitis C: are interferons really necessary? Liver Int 32(1):108–112

    Article  CAS  PubMed  Google Scholar 

  • Forestier N, Zeuzem S (2012) Telaprevir for the treatment of hepatitis C. Expert Opin Pharmacother 13:593–606

    Article  CAS  PubMed  Google Scholar 

  • Forestier N, Larrey D, Guyader D et al (2011) Treatment of chronic hepatitis C patients with the NS3/4A protease inhibitor danoprevir (ITMN-191/RG7227) leads to robust reductions in viral RNA: a phase 1b multiple ascending dose study. J Hepatol 54:1130–1136

    Article  CAS  PubMed  Google Scholar 

  • Foster GR, Hezode C, Bronowicki JP et al (2011a) Telaprevir alone or with peginterferon and ribavirin reduces HCV RNA in patients with chronic genotype 2 but not genotype 3 infections. Gastroenterology 141(881–889):e881

    Article  CAS  Google Scholar 

  • Foster TL, Verow M, Wozniak AL et al (2011b) Resistance mutations define specific antiviral effects for inhibitors of the hepatitis C virus p7 ion channel. Hepatology 54:79–90

    Article  CAS  PubMed  Google Scholar 

  • Fridell RA, Qiu D, Wang C et al (2010) Resistance analysis of the hepatitis C virus NS5A inhibitor BMS-790052 in an in vitro replicon system. Antimicrob Agents Chemother 54:3641–3650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridell RA, Wang C, Sun JH et al (2011) Genotypic and phenotypic analysis of variants resistant to hepatitis C virus nonstructural protein 5A replication complex inhibitor BMS-790052 in humans: in vitro and in vivo correlations. Hepatology 54:1924–1935

    Article  CAS  PubMed  Google Scholar 

  • Gane EJ, Roberts SK, Stedman CAM et al (2010) Oral combination therapy with a nucleoside polymerase inhibitor (RG7128) and danoprevir for chronic hepatitis C genotype 1 infection (INFORM-1): a randomised, double-blind, placebo-controlled, dose-escalation trial. Lancet 376:1467–1475

    Article  CAS  PubMed  Google Scholar 

  • Gane E, Stedman C, Hyland RH et al (2012a) Once daily sofosbuvir (GS-7977) plus ribavirin in patients with HCV genotypes 1, 2, and 3: the electron trial. In: Abstracts 229 of the 63rd annual meeting of the american association for the study of liver diseases, Boston, Massachusetts, 9–13 Nov 2012

    Google Scholar 

  • Gane EJ, Stedman CA, Hyland RH et al (2012b) Electron: once daily PSI-7977 plus RBV in HCV GT1/2/3. J Hepatol 56(2):S438–S439

    Article  Google Scholar 

  • Gao M, Nettles RE, Belema M et al (2010) Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465:96–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalsamy A, Aplasca A, Ciszewski G et al (2006) Design and synthesis of 3,4-dihydro-1H-[1]-benzothieno[2,3-c]pyran and 3,4-dihydro-1H-pyrano[3,4-b]benzofuran derivatives as non-nucleoside inhibitors of HCV NS5B RNA dependent RNA polymerase. Bioorg Med Chem Lett 16:457–460

    Article  CAS  PubMed  Google Scholar 

  • Goudreau N, Llinas-Brunet M (2005) The therapeutic potential of NS3 protease inhibitors in HCV infection. Expert Opin Investig Drugs 14:1129–1144

    Article  CAS  PubMed  Google Scholar 

  • Gouttenoire J, Penin F, Moradpour D (2010) Hepatitis C virus nonstructural protein 4B: a journey into unexplored territory. Rev Med Virol 20:117–129

    Article  CAS  PubMed  Google Scholar 

  • Gray F, Amphlett E, Bright H et al (2007) GSK625433; a novel and highly potent inhibitor of the HCVNS5B polymerase. J Hepatol 46:S225

    Article  Google Scholar 

  • Griffin SD, Beales LP, Clarke DS et al (2003) The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, amantadine. FEBS Lett 535:34–38

    Article  CAS  PubMed  Google Scholar 

  • Griffin S, StGelais C, Owsianka AM et al (2008) Genotype-dependent sensitivity of hepatitis C virus to inhibitors of the p7 ion channel. Hepatology 48:1779–1790

    Article  CAS  PubMed  Google Scholar 

  • Gu B, Johnston VK, Gutshall LL et al (2003) Arresting initiation of hepatitis C virus RNA synthesis using heterocyclic derivatives. J Biol Chem 278:16602–16607

    Article  CAS  PubMed  Google Scholar 

  • Hebner CM, Han B, Brendza KM et al (2012) The HCV Non-nucleoside inhibitor tegobuvir utilizes a novel mechanism of action to inhibit NS5B polymerase function. Plos One 7:e39163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Z, Cameron CE, Walker MP et al (2001) A novel mechanism to ensure terminal initiation by hepatitis C virus NS5B polymerase. Virology 285:6–11

    Article  CAS  PubMed  Google Scholar 

  • Howe AY, Bloom J, Baldick CJ et al (2004) Novel nonnucleoside inhibitor of hepatitis C virus RNA-dependent RNA polymerase. Antimicrob Agents Chemother 48:4813–4821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe AY, Cheng H, Thompson I et al (2006) Molecular mechanism of a thumb domain hepatitis C virus nonnucleoside RNA-dependent RNA polymerase inhibitor. Antimicrob Agents Chemother 50:4103–4113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe AY, Cheng H, Johann S et al (2008) Molecular mechanism of hepatitis C virus replicon variants with reduced susceptibility to a benzofuran inhibitor, HCV-796. Antimicrob Agents Chemother 52:3327–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Staschke K, De Francesco R, Tan SL (2007) Phosphorylation of hepatitis C virus NS5A nonstructural protein: a new paradigm for phosphorylation-dependent viral RNA replication? Virology 364:1–9

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Podos S, Patel D et al (2010) ACH-2684: HCV NS3 protease inhibitor with potent activity against multiple genotypes and known resistant variants. Hepatology 52(S1):1204A

    Google Scholar 

  • Jacobson I, Pockros P, Lalezari J et al (2009) Antiviral activity of filibuvir in combination with pegylated interferon alfa-2a and ribavirin for 28 days in treatment naive patients chronically infected with HCV genotype 1. J Hepatol 50:S382–S383

    Article  Google Scholar 

  • Kazmierski WM, Hamatake R, Duan M et al (2012) Discovery of novel urea-based hepatitis C protease inhibitors with high potency against protease-inhibitor-resistant mutants. J Med Chem 55:3021–3026

    Article  CAS  PubMed  Google Scholar 

  • Khoury G, Ewart G, Luscombe C et al (2010) Antiviral efficacy of the novel compound BIT225 against HIV-1 release from human macrophages. Antimicrob Agents Chemother 54:835–845

    Article  CAS  PubMed  Google Scholar 

  • Kieffer TL, Sarrazin C, Miller JS et al (2007) Telaprevir and pegylated interferon-alpha-2a inhibit wild-type and resistant genotype 1 hepatitis C virus replication in patients. Hepatology 46:631–639

    Article  CAS  PubMed  Google Scholar 

  • Kim JL, Morgenstern KA, Lin C et al (1996) Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 87:343–355

    Article  CAS  PubMed  Google Scholar 

  • Kneteman NM, Howe AYM, Gao TJ et al (2009) HCV796: a selective nonstructural protein 5B polymerase inhibitor with potent anti-hepatitis C virus activity in vitro, in mice with chimeric human livers, and in humans infected with hepatitis C virus. Hepatology 49:745–752

    Article  CAS  PubMed  Google Scholar 

  • Kowdley KV, Lawitz E, Crespo I et al (2012a) Atomic: 97 % RVR for PSI-7977 + PEG/RBV X 12 weeks regimen in HCV GT1: an end to response-guided therapy? J Hepatol 56(2):S1

    Article  Google Scholar 

  • Kowdley KV, Lawitz E, Poordad F et al (2012b) A 12 weeks interferon-free treatment regimen with ABT-450/r, ABT-267, ABT-333 and ribavirin achieves SVR12 rates (observed data) of 99 % in treatment-naïve patients and 93 % in prior null responders with HCV genotype1 infection. In: Abstracts LB-1 of the 63rd annual meeting of the american association for the study of liver diseases, Boston, Massachusetts, 9–13 Nov 2012

    Google Scholar 

  • Kukolj G, McGibbon GA, McKercher G et al (2005) Binding site characterization and resistance to a class of non-nucleoside inhibitors of the hepatitis C virus NS5B polymerase. J Biol Chem 280:39260–39267

    Article  CAS  PubMed  Google Scholar 

  • Kwo PY, Lawitz EJ, McCone J et al (2010) Efficacy of boceprevir, an NS3 protease inhibitor, in combination with peginterferon alfa-2b and ribavirin in treatment-naive patients with genotype 1 hepatitis C infection (SPRINT-1): an open-label, randomised, multicentre phase 2 trial. Lancet 376:705–716

    Article  CAS  PubMed  Google Scholar 

  • Lagace L, White PW, Bousquet C et al (2012) In vitro resistance profile of the hepatitis C virus NS3 protease inhibitor BI 201335. Antimicrob Agents Chemother 56:569–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam AM, Espiritu C, Bansal S et al (2011a) Hepatitis C virus nucleotide inhibitors PSI-352938 and PSI-353661 exhibit a novel mechanism of resistance requiring multiple mutations within replicon RNA. J Virol 85:12334–12342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam AM, Espiritu C, Murakami E et al (2011b) Inhibition of hepatitis C virus replicon RNA synthesis by PSI-352938, a cyclic phosphate prodrug of {beta}-D-2′-deoxy-2′-{alpha}-fluoro-2′-{beta}-C-Methylguanosine. Antimicrob Agents Chemother 55:2566–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam AM, Espiritu C, Bansal S et al (2012) Genotype and subtype profiling of PSI-7977 as a nucleotide inhibitor of hepatitis C virus. Antimicrob Agents Chemother 56:3359–3368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamarre D, Anderson PC, Bailey M et al (2003) An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature 426:186–189

    Article  CAS  PubMed  Google Scholar 

  • Larrey DG, Benhamou Y, Lohse AW et al (2009) Bi 207127 is a potent HCV RNA polymerase inhibitor during 5 days monotherapy in patients with chronic hepatitis C. Hepatology 50:1044A

    Google Scholar 

  • Larrey D, Lohse AW, de Ledinghen V et al (2012) Rapid and strong antiviral activity of the non-nucleosidic NS5B polymerase inhibitor BI 207127 in combination with peginterferon alfa 2a and ribavirin. J Hepatol 57:39–46

    Article  CAS  PubMed  Google Scholar 

  • Lawitz E, Nguyen T, Younes Z et al (2006) Valopicitabine (NM283) plus PEG-interferon in treatment-naive hepatitis C patients with HCV genotype-1 infection: HCV RNA clearance during 24 weeks of treatment. Hepatology 44:223A

    Google Scholar 

  • Lawitz E, Rodriguez-Torres M, DeMico M et al (2009) Antiviral activity of ANA598, a potent non-nucleoside polymerase inhibitor, in chronic hepatitis C patients. J Hepatol 50:S384

    Article  Google Scholar 

  • Lawitz E, Gaultier I, Poordad F et al (2010a) 4 weeks virologic response and safety of ABT-450 given with low-dose ritonavir (ABT-450r) in combination with pegylated interferon alfa 2a and ribavirin after 3 days monotherapy in HCV-infected treatment-naive subjects. Hepatology 52(1):878A–979A

    Google Scholar 

  • Lawitz E, Rodriguez-Torres M, Rustgi V et al (2010b) Safety and antiviral activity of ANA598 in combination with pegylated IFN alpha 2a plus ribavirin in treatment-naïve genotype-1 chronic HCV patients. Hepatology 52:334A–335A

    Google Scholar 

  • Lawitz E, Rodriguez-Torres M, Denning JM et al (2011) Once dialy dual-nucleotide combination of PSI-938 and PSI-7977 provides 94 % HCV RNA < LOD at day 14: first purine/pyrimidine clinical combination data (the nuclear study). J Hepatol 54:S543

    Article  Google Scholar 

  • Lawitz EJ, Gruener D, Hill JM et al (2012) A phase 1, randomized, placebo-controlled, 3 days, dose-ranging study of GS-5885, an NS5A inhibitor, in patients with genotype 1 hepatitis C. J Hepatol 57:24–31

    Article  CAS  PubMed  Google Scholar 

  • Le Pogam S, Jiang WR, Leveque V et al (2006a) In vitro selected Con1 subgenomic replicons resistant to 2′-C-methyl-cytidine or to R1479 show lack of cross resistance. Virology 351:349–359

    Article  PubMed  CAS  Google Scholar 

  • Le Pogam S, Kang H, Harris SF et al (2006b) Selection and characterization of replicon variants dually resistant to thumb- and palm-binding nonnucleoside polymerase inhibitors of the hepatitis C virus. J Virol 80:6146–6154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Pogam S, Seshaadri A, Ewing A et al (2010) RG7128 alone or in combination with pegylated interferon-alpha 2a and ribavirin prevents hepatitis C virus (HCV) replication and selection of resistant variants in HCV-infected patients. J Infect Dis 202:1510–1519

    Article  PubMed  CAS  Google Scholar 

  • Lee LY, Tong CY, Wong T, Wilkinson M (2012) New therapies for chronic hepatitis C infection: a systematic review of evidence from clinical trials. Int J Clin Pract 66:342–355

    Article  CAS  PubMed  Google Scholar 

  • Lemm JA, O’Boyle D 2nd, Liu M et al (2010) Identification of hepatitis C virus NS5A inhibitors. J Virol 84:482–491

    Article  CAS  PubMed  Google Scholar 

  • Lemm JA, Leet JE, O’Boyle DR 2nd et al (2011) Discovery of potent hepatitis C virus NS5A inhibitors with dimeric structures. Antimicrob Agents Chemother 55:3795–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz O, Verbinnen T, Lin TI et al (2010) In vitro resistance profile of the hepatitis C virus NS3/4A protease inhibitor TMC435. Antimicrob Agents Chemother 54:1878–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesburg CA, Cable MB, Ferrari E et al (1999) Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat Struct Biol 6:937–943

    Article  CAS  PubMed  Google Scholar 

  • Li H, Tatlock J, Linton A et al (2009) Discovery of (R)-6-Cyclopentyl-6-(2-(2,6-diethylpyridin-4-yl)ethyl)-3-((5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)methyl)-4-hydroxy-5,6-dihydropyran-2-on e (PF-00868554) as a potent and orally available hepatitis C virus polymerase inhibitor. J Med Chem 52:1255–1258

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Thomson JA, Rice CM (1995) A central region in the hepatitis C virus NS4A protein allows formation of an active NS3-NS4A serine proteinase complex in vivo and in vitro. J Virol 69:4373–4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, Lin K, Luong YP et al (2004) In vitro resistance studies of hepatitis C virus serine protease inhibitors, VX-950 and BILN 2061: structural analysis indicates different resistance mechanisms. J Biol Chem 279:17508–17514

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Kwong AD, Perni RB (2006) Discovery and development of VX-950, a novel, covalent, and reversible inhibitor of hepatitis C virus NS3-4A serine protease. Infect Disord Drug Targets 6:3–16

    Article  CAS  PubMed  Google Scholar 

  • Lin TI, Lenz O, Fanning G et al (2009) In vitro activity and preclinical profile of TMC435350, a potent hepatitis C virus protease inhibitor. Antimicrob Agents Chemother 53:1377–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Kong R, Mann P et al (2012) In vitro resistance analysis of HCV NS5A inhibitor MK-8742 demonstrates increased potency against clinical resistance variants ans higher resistance barrier. J Hepatol 56(2):S334–S335

    Article  Google Scholar 

  • Liverton NJ, Carroll SS, Dimuzio J et al (2010) MK-7009, a potent and selective inhibitor of hepatitis C virus NS3/4A protease. Antimicrob Agents Chemother 54:305–311

    Article  CAS  PubMed  Google Scholar 

  • Love RA, Parge HE, Wickersham JA et al (1996) The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell 87:331–342

    Article  CAS  PubMed  Google Scholar 

  • Love RA, Brodsky O, Hickey MJ et al (2009) Crystal structure of a novel dimeric form of NS5A domain I protein from hepatitis C virus. J Virol 83:4395–4403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludmerer SW, Graham DJ, Boots E et al (2005) Replication fitness and NS5B drug sensitivity of diverse hepatitis C virus isolates characterized by using a transient replication assay. Antimicrob Agents Chemother 49:2059–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luik P, Chew C, Aittoniemi J et al (2009) The 3-dimensional structure of a hepatitis C virus p7 ion channel by electron microscopy. Proc Natl Acad Sci USA 106:12712–12716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luscombe CA, Huang Z, Murray MG et al (2010) A novel hepatitis C virus p7 ion channel inhibitor, BIT225, inhibits bovine viral diarrhea virus in vitro and shows synergism with recombinant interferon-alpha-2b and nucleoside analogues. Antiviral Res 86:144–153

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Jiang WR, Robledo N et al (2007) Characterization of the metabolic activation of hepatitis C virus nucleoside inhibitor beta-D-2′-deoxy-2′-fluoro-2′-C-methylcytidine (PSI-6130) and identification of a novel active 5′-triphosphate species. J Biol Chem 282:29812–29820

    Article  CAS  PubMed  Google Scholar 

  • Macdonald A, Harris M (2004) Hepatitis C virus NS5A: tales of a promiscuous protein. J Gen Virol 85:2485–2502

    Article  CAS  PubMed  Google Scholar 

  • Manns MP, Bourliere M, Benhamou Y et al (2011) Potency, safety, and pharmacokinetics of the NS3/4A protease inhibitor BI201335 in patients with chronic HCV genotype-1 infection. J Hepatol 54:1114–1122

    Article  CAS  PubMed  Google Scholar 

  • May MM, Brohm D, Harrenga A et al (2012) Discovery of substituted N-phenylbenzenesulphonamides as a novel class of non-nucleoside hepatitis C virus polymerase inhibitors. Antiviral Res 95:182–191

    Article  CAS  PubMed  Google Scholar 

  • McCown MF, Rajyaguru S, Le Pogam S et al (2008) The hepatitis C virus replicon presents a higher barrier to resistance to nucleoside analogs than to nonnucleoside polymerase or protease inhibitors. Antimicrob Agents Chemother 52:1604–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuigan C, Madela K, Aljarah M et al (2010) Design, synthesis and evaluation of a novel double pro-drug: INX-08189. A new clinical candidate for hepatitis C virus. Bioorg Med Chem Lett 20:4850–4854

    Article  CAS  PubMed  Google Scholar 

  • McPhee F, Friborg J, Levine S et al (2012a) Resistance analysis of the hepatitis C virus NS3 protease inhibitor asunaprevir. Antimicrob Agents Chemother 56:3670–3681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPhee F, Sheaffer AK, Friborg J et al (2012b) Preclinical profile and characterization of the hepatitis C virus NS3 protease inhibitor asunaprevir (BMS-650032). Antimicrob Agents Chemother 56:5387–5396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Membreno FE, Lawitz EJ (2011) The HCV NS5B nucleoside and non-nucleoside inhibitors. Clin Liver Dis 15:611–626

    Article  PubMed  Google Scholar 

  • Migliaccio G, Tomassini JE, Carroll SS et al (2003) Characterization of resistance to non-obligate chain-terminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro. J Biol Chem 278:49164–49170

    Article  CAS  PubMed  Google Scholar 

  • Moreno C, Berg T, Tanwandee T et al (2012) Antiviral activity of TMC435 monotherapy in patients infected with HCV genotypes 2–6: TMC435-C202, a phase IIa, open-label study. J Hepatol 56:1247–1253

    Article  CAS  PubMed  Google Scholar 

  • Murakami E, Bao H, Ramesh M et al (2007) Mechanism of activation of beta-D-2′-deoxy-2′-fluoro-2′-c-methylcytidine and inhibition of hepatitis C virus NS5B RNA polymerase. Antimicrob Agents Chemother 51:503–509

    Article  CAS  PubMed  Google Scholar 

  • Murakami E, Niu CR, Bao HY et al (2008) The mechanism of action of beta-D-2′-deoxy-2′-fluoro-2′-C-methylcytidme involves a second metabolic pathway leading to beta-D-2′-deoxy-2-fluoro-2′-C-methyluridine 5′-triphosphate, a potent inhibitor of the hepatitis C virus RNA-dependent RNA polymerase. Antimicrob Agents Chemother 52:458–464

    Article  CAS  PubMed  Google Scholar 

  • Narjes F, Crescenzi B, Ferrara M et al (2011) Discovery of (7R)-14-cyclohexyl-7-{[2-(dimethylamino)ethyl](methyl) amino}-7,8-dihydro-6H-indolo[1,2-e][1,5]benzoxazocine-11-carboxylic acid (MK-3281), a potent and orally bioavailable finger-loop inhibitor of the hepatitis C virus NS5B polymerase. J Med Chem 54:289–301

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR, Gane EJ, Jacobson IM et al (2011) VX-222/telaprevir in combination with peginterferon-alfa-2a and ribavirin in treatment-naive genotype 1 HCV patients treated for 12 weeks: zenith study, SVR12 interim analysis. Hepatology 54:1435A

    Google Scholar 

  • Nguyen TT, Gates AT, Gutshall LL et al (2003) Resistance profile of a hepatitis C virus RNA-dependent RNA polymerase benzothiadiazine inhibitor. Antimicrob Agents Chemother 47:3525–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen DB, Eldrup AB, Bartholomew L et al (2004) A 7-deaza-adenosine analog is a potent and selective inhibitor of hepatitis C virus replication with excellent pharmacokinetic properties. Antimicrob Agents Chemother 48:3944–3953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquinelli C, McPhee F, Eley T et al (2012) Single- and multiple-ascending-dose studies of the NS3 protease inhibitor asunaprevir in subjects with or without chronic hepatitis C. Antimicrob Agents Chemother 56:1838–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauwels F, Mostmans W, Quirynen LMM et al (2007) Binding-site identification and genotypic profiling of hepatitis C virus polymerase inhibitors. J Virol 81:6909–6919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlotsky JM, Najera I, Jacobson I (2012) Resistance to mericitabine, a nucleoside analogue inhibitor of HCV RNA-dependent RNA polymerase. Antivir Ther 17:411–423

    Article  CAS  PubMed  Google Scholar 

  • Pessoa MG, Cheinquer H, Almeida PR et al (2012) Re-treatment of previous non-responders and relapsers to interferon plus ribavirin with peginterferon alfa-2a (40KD), ribavirin ± amantadine in patients with chronic hepatitis C: randomized multicentre clinical trial. Ann Hepatol 11:52–61

    Article  CAS  PubMed  Google Scholar 

  • Pierra C, Amador A, Benzaria S et al (2006) Synthesis and pharmacokinetics of valopicitabine (NM283), an efficient prodrug of the potent anti-HCV agent 2′-C-methylcytidine. J Med Chem 49:6614–6620

    Article  CAS  PubMed  Google Scholar 

  • Pol S, Ghalib RH, Rustgi VK et al (2012) Daclatasvir for previously untreated chronic hepatitis C genotype-1 infection: a randomised, parallel-group, double-blind, placebo-controlled, dose-finding, phase 2a trial. Lancet Infect Dis 12:671–677

    Article  CAS  PubMed  Google Scholar 

  • Poordad F, Lawitz E, Kowdley KV et al (2012a) 12 weeks interferon-free regimen of ABT-450/R + ABT-333 + ribavirin achieved SVR12 in more than 90 % of treatment-naive HCV genotype-1-infected subjects and 47 % of previous non-responders. J Hepatol 56(2):S549–S550

    Article  Google Scholar 

  • Poordad F, Lawitz E, Kowdley KV et al (2012b) 12 weeks interferon-free regimen of ABT-450/R + ABT-333 + ribavirin achieved svr12 in more than 90 % of treatment-naive HCV genotype-1-infected subjects and 47 % of previous non-responders. J Hepatol 56:S549–S550

    Article  Google Scholar 

  • Qiu D, Lemm JA, O’Boyle DR 2nd et al (2011) The effects of NS5A inhibitors on NS5A phosphorylation, polyprotein processing and localization. J Gen Virol 92:2502–2511

    Article  CAS  PubMed  Google Scholar 

  • Rai R, Deval J (2011) New opportunities in anti-hepatitis C virus drug discovery: targeting NS4B. Antiviral Res 90:93–101

    Article  CAS  PubMed  Google Scholar 

  • Reddy MB, Chen Y, Haznedar JO et al (2012) Impact of low-dose ritonavir on danoprevir pharmacokinetics: results of computer-based simulations and a clinical drug-drug interaction study. Clin Pharmacokinet 51:457–465

    Article  CAS  PubMed  Google Scholar 

  • Reesink HW, Fanning GC, Farha KA et al (2010) Rapid HCV-RNA decline with once daily TMC435: a phase I study in healthy volunteers and hepatitis C patients. Gastroenterology 138:913–921

    Article  CAS  PubMed  Google Scholar 

  • Reghellin V, Fenu S, Bianco A et al (2012) HCV NS5A inhibitor BMS-790052 exerts its antiviral effects by reducing phosphatidylinositol 4-phosphate levels in the virus-induced membranous web. In: Abstracts LB-9 of the 19th international symposium on hepatitis C virus and related viruses, Venice, Italy, 5–9 Octo 2012

    Google Scholar 

  • Reiss S, Rebhan I, Backes P et al (2011) Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe 9:32–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Torres M, Lawitz E, Conway B et al (2010) Safety and antiviral activity of the HCV non-nucleoside polymerase inhibitor VX-222 in treatment-naive genotype 1 HCV-infected patients. J Hepatol 52:S14

    Article  Google Scholar 

  • Rodriguez-Torres M, Lawitz E, Hazan L et al (2011) Antiviral activity and safety of INX-08189, a nucleotide polymerase inhibitor, following 7 days of oral therapy in naive genotype-1 chronic HCV patients. Hepatology 54:535A

    Google Scholar 

  • Romano KP, Ali A, Aydin C et al (2012) The molecular basis of drug resistance against hepatitis C virus NS3/4A protease inhibitors. Plos Pathog 8:e1002832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai A, St Claire MS, Faulk K et al (2003) The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences. Proc Natl Acad Sci USA 100:11646–11651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarrazin C, Zeuzem S (2010) Resistance to direct antiviral agents in patients with hepatitis C virus infection. Gastroenterology 138:447–462

    Article  CAS  PubMed  Google Scholar 

  • Sarrazin C, Kieffer TL, Bartels D et al (2007) Dynamic hepatitis C virus genotypic and phenotypic changes in patients treated with the protease inhibitor telaprevir. Gastroenterology 132:1767–1777

    Article  CAS  PubMed  Google Scholar 

  • Sarrazin C, Hezode C, Zeuzem S, Pawlotsky JM (2012) Antiviral strategies in hepatitis C virus infection. J Hepatol 56(1):S88–S100

    Article  CAS  PubMed  Google Scholar 

  • Schaefer EA, Chung RT (2012) Anti-hepatitis C virus drugs in development. Gastroenterology 142(1340–1350):e1341

    Google Scholar 

  • Schechter I, Berger A (1967) On the size of the active site in proteases. I Papain Biochem Biophys Res Commun 27:157–162

    Article  CAS  PubMed  Google Scholar 

  • Seiwert SD, Andrews SW, Jiang Y et al (2008) Preclinical characteristics of the hepatitis C virus NS3/4A protease inhibitor ITMN-191 (R7227). Antimicrob Agents Chemother 52:4432–4441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng XC, Appleby T, Butler T et al (2012a) Discovery of GS-9451: an acid inhibitor of the hepatitis C virus NS3/4A protease. Bioorg Med Chem Lett 22:2629–2634

    Article  PubMed  CAS  Google Scholar 

  • Sheng XC, Casarez A, Cai R et al (2012b) Discovery of GS-9256: a novel phosphinic acid derived inhibitor of the hepatitis C virus NS3/4A protease with potent clinical activity. Bioorg Med Chem Lett 22:1394–1396

    Article  CAS  PubMed  Google Scholar 

  • Shepard CW, Finelli L, Alter MJ (2005) Global epidemiology of hepatitis C virus infection. Lancet Infect Dis 5:558–567

    Article  PubMed  Google Scholar 

  • Shi ST, Herlihy KJ, Graham JP et al (2009) Preclinical characterization of PF-00868554, a potent nonnucleoside inhibitor of the hepatitis C virus RNA-dependent RNA polymerase. Antimicrob Agents Chemother 53:2544–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slater MJ, Amphlett EM, Andrews DM et al (2007) Optimization of novel acyl pyrrolidine inhibitors of hepatitis C virus RNA-dependent RNA polymerase leading to a development candidate. J Med Chem 50:897–900

    Article  CAS  PubMed  Google Scholar 

  • Smith JP (1997) Treatment of chronic hepatitis C with amantadine. Dig Dis Sci 42:1681–1687

    Article  CAS  PubMed  Google Scholar 

  • Steinmann E, Penin F, Kallis S et al (2007a) Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. Plos Pathog 3:962–971

    Article  CAS  Google Scholar 

  • Steinmann E, Whitfield T, Kallis S et al (2007b) Antiviral effects of amantadine and iminosugar derivatives against hepatitis C virus. Hepatology 46:330–338

    Article  CAS  PubMed  Google Scholar 

  • Stuyver LJ, McBrayer TR, Tharnish PM et al (2006) Inhibition of hepatitis C replicon RNA synthesis by beta-D-2′-deoxy-2′-fluoro-2′-C-methylcytidine: a specific inhibitor of hepatitis C virus replication. Antivir Chem Chemother 17:79–87

    Article  CAS  PubMed  Google Scholar 

  • Sulkowski M, Rodriguez-Torres M, Lawitz E et al (2012a) High sustained virologic response rate in treatment-naïve HCV genotype 1a and 1b patients treated for 12 weeks with an interferon-free all-oral quad regimen: interim results. J Hepatol 56:S560

    Google Scholar 

  • Sulkowski MS, Gardiner DF, Rodriguez-Torres M et al (2012b) High rate of sustained virologic response with the all-oral combination of daclatasvir (NS5A inhibitor) plus sofosbuvir (nucleotide NS5B inhibitor), with or without ribavirin, in treatment-naïve patients chronically infected with HCV genotype 1, 2, or 3. In: Abstracts LB-2 of the 63rd annual meeting of the american association for the study of liver diseases, Boston, Massachusetts, 9–13 Nov 2012

    Google Scholar 

  • Summa V, Ludmerer SW, McCauley JA et al (2012) MK-5172, a selective inhibitor of hepatitis C virus NS3/4a protease with broad activity across genotypes and resistant variants. Antimicrob Agents Chemother 56:4161–4167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Susser S, Welsch C, Wang Y et al (2009) Characterization of resistance to the protease inhibitor boceprevir in hepatitis C virus-infected patients. Hepatology 50:1709–1718

    Article  CAS  PubMed  Google Scholar 

  • Tanwandee T, Luscombe CA, Ewart G et al (2011) Antiviral activity and tolerability of BIT225 plus pegylated interferon alpha 2a or 2b and weight-based ribavirin for 28 days in HCV treatment-naïve monoinfected patients. Glob Antiviral J 7(1):64 HEP DART 2011

    Google Scholar 

  • Targett-Adams P, Graham EJ, Middleton J et al (2011) Small molecules targeting hepatitis C virus-encoded NS5A cause subcellular redistribution of their target: insights into compound modes of action. J Virol 85:6353–6368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tellinghuisen TL, Marcotrigiano J, Rice CM (2005) Structure of the zinc-binding domain of an essential component of the hepatitis C virus replicase. Nature 435:374–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson P, Patel R, Steffy K, Appleman J (2009) Preclinical studies of ANA598 combined with other Anti-HCV agents demonstrate potential of combination treatment. J Hepatol 50:S37

    Article  Google Scholar 

  • Tomei L, Failla C, Santolini E et al (1993) NS3 is a serine protease required for processing of hepatitis C virus polyprotein. J Virol 67:4017–4026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomei L, Altamura S, Bartholomew L et al (2003) Mechanism of action and antiviral activity of benzimidazole-based allosteric inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. J Virol 77:13225–13231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomei L, Altamura S, Bartholomew L et al (2004) Characterization of the inhibition of hepatitis C virus RNA replication by nonnucleosides. J Virol 78:938–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trozzi C, Bartholomew L, Ceccacci A et al (2003) In vitro selection and characterization of hepatitis C virus serine protease variants resistant to an active-site peptide inhibitor. J Virol 77:3669–3679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernachio JH, Bleiman B, Bryant KD et al (2011) INX-08189, a phosphoramidate prodrug of 6-O-methyl-2′-C-methyl guanosine, is a potent inhibitor of hepatitis C virus replication with excellent pharmacokinetic and pharmacodynamic properties. Antimicrob Agents Chemother 55:1843–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Wagner M, Hofmann WP, Teuber G et al (2008) Placebo-controlled trial of 400 mg amantadine combined with peginterferon alfa-2a and ribavirin for 48 weeks in chronic hepatitis C virus-1 infection. Hepatology 48:1404–1411

    Article  CAS  Google Scholar 

  • Wagaw S, Ravn M, Engstrom K et al (2009) Process for making macrocyclic oximyl hepatitis C protease inhibitors. WO/2009/073780

    Google Scholar 

  • Wagner F, Thompson R, Kantaridis C et al (2011) Antiviral activity of the hepatitis C virus polymerase inhibitor filibuvir in genotype 1-infected patients. Hepatology 54:50–59

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Ng KK, Cherney MM et al (2003) Non-nucleoside analogue inhibitors bind to an allosteric site on HCV NS5B polymerase. Crystal structures and mechanism of inhibition. J Biol Chem 278:9489–9495

    Article  CAS  PubMed  Google Scholar 

  • White PW, Llinas-Brunet M, Amad M et al (2010) Preclinical characterization of BI 201335, a C-terminal carboxylic acid inhibitor of the hepatitis C virus NS3-NS4A protease. Antimicrob Agents Chemother 54:4611–4618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Li Y, Munshi S et al (1998) Complex of NS3 protease and NS4A peptide of BK strain hepatitis C virus: a 2.2 A resolution structure in a hexagonal crystal form. Protein Sci 7:837–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Wiles J, Patel D et al (2012) Preclinical characteristics of of ACH-3102: a novel HCV NS5A inhibitor with imporved potency against genotype-1a virus and variants resistant to 1st generation of NS5A inhibitors. J Hepatol 56(2):S330

    Article  Google Scholar 

  • Yi G, Deval J, Fan B et al (2012) Biochemical study of the comparative inhibition of hepatitis C virus RNA polymerase by VX-222 and filibuvir. Antimicrob Agents Chemother 56:830–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeuzem S, Buggisch P, Agarwal K et al (2012a) The protease inhibitor, GS-9256, and non-nucleoside polymerase inhibitor tegobuvir alone, with ribavirin, or pegylated interferon plus ribavirin in hepatitis C. Hepatology 55:749–758

    Article  CAS  PubMed  Google Scholar 

  • Zeuzem S, Soriano A, Asselah T et al (2012b) Interferon (IFN)-free combination treatment with the HCV NS3/4A protease inhibitor BI 201335 and the non-nucleoside NS5B inhibitor BI 207127 ± ribavirin (R): final results of SOUND-C2 and predictors of response. In: Abstracts 232 of the 63rd annual meeting of the american association for the study of liver diseases, Boston, Massachusetts, 9–13 Nov 2012

    Google Scholar 

  • Zhou XJ, Pietropaolo K, Chen J et al (2011) Safety and pharmacokinetics of IDX184, a liver-targeted nucleotide polymerase inhibitor of hepatitis C virus, in healthy subjects. Antimicrob Agents Chemother 55:76–81

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele De Francesco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Delang, L., Neyts, J., Vliegen, I., Abrignani, S., Neddermann, P., De Francesco, R. (2013). Hepatitis C Virus-Specific Directly Acting Antiviral Drugs. In: Bartenschlager, R. (eds) Hepatitis C Virus: From Molecular Virology to Antiviral Therapy. Current Topics in Microbiology and Immunology, vol 369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27340-7_12

Download citation

Publish with us

Policies and ethics