Skip to main content

Liver Injury and Disease Pathogenesis in Chronic Hepatitis C

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 369))

Abstract

Chronic hepatitis C virus (HCV) infection is a leading cause of liver-specific morbidity and mortality in humans, including progressive liver fibrosis, cirrhosis, and hepatocellular carcinoma. It has also been associated with altered function in other organs, including those of the endocrine, hematopoietic, and nervous systems. Disease results from both direct regulation of cellular metabolism and signaling pathways by viral proteins as well as indirect consequences of the host response to HCV infection, including inflammatory responses stemming from immune recognition of the virus. Recent in vitro studies have begun to reveal molecular mechanisms responsible for virus-induced changes in cell metabolism and cellular kinase cascades that culminate in pathologic consequences in the liver, such as steatosis, insulin resistance, and carcinogenesis. Here we discuss how these findings may be relevant to disease pathogenesis in patients, and suggest future directions in the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adinolfi LE, Gambardella M, Andreana A et al (2001) Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity. Hepatology 33:1358–1364

    CAS  PubMed  Google Scholar 

  • Agnello V, Abel G (1997) Localization of hepatitis C virus in cutaneous vasculitic lesions in patients with type II cryoglobulinemia. Arthritis Rheum 40:2007–2015

    CAS  PubMed  Google Scholar 

  • Agnello V, Chung RT, Kaplan LM (1992) A role for hepatitis C virus infection in type II cryoglobulinemia. N Engl J Med 327:1490–1495

    CAS  PubMed  Google Scholar 

  • Ahmad J, Eng FJ, Branch AD (2011) HCV and HCC: clinical update and a review of HCC-associated viral mutations in the core gene. Semin Liver Dis 31:347–355

    CAS  PubMed  Google Scholar 

  • Akuta N, Suzuki F, Kawamura Y et al (2007) Amino acid substitutions in the hepatitis C virus core region are the important predictor of hepatocarcinogenesis. Hepatology 46:1357–1364

    CAS  PubMed  Google Scholar 

  • Alonzi T, Agrati C, Costabile B et al (2004) Steatosis and intrahepatic lymphocyte recruitment in hepatitis C virus transgenic mice. J Gen Virol 85:1509–1520

    CAS  PubMed  Google Scholar 

  • Altlparmak E, Koklu S, Yalinkilic M et al (2005) Viral and host causes of fatty liver in chronic hepatitis B. World J Gastroenterol 11:3056–3059

    PubMed  PubMed Central  Google Scholar 

  • Anderson EJ, Lustig ME, Boyle KE et al (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest 119:573–581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arase Y, Suzuki F, Suzuki Y et al (2009) Sustained virological response reduces incidence of onset of type 2 diabetes in chronic hepatitis C. Hepatology 49:739–744

    CAS  PubMed  Google Scholar 

  • Aytug S, Reich D, Sapiro LE et al (2003) Impaired IRS-1/PI3-kinase signaling in patients with HCV: a mechanism for increased prevalence of type 2 diabetes. Hepatology 38:1384–1392

    CAS  PubMed  Google Scholar 

  • Banerjee S, Saito K, Ait-Goughoulte M et al (2008) Hepatitis C virus core protein upregulates serine phosphorylation of insulin receptor substrate-1 and impairs the downstream akt/protein kinase B signaling pathway for insulin resistance. J Virol 82:2606–2612

    CAS  PubMed  Google Scholar 

  • Banerjee A, Meyer K, Mazumdar B et al (2010) Hepatitis C virus differentially modulates activation of forkhead transcription factors and insulin-induced metabolic gene expression. J Virol 84:5936–5946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barba G, Harper F, Harada T et al (1997) Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc Natl Acad Sci USA 94:1200–1205

    CAS  PubMed  Google Scholar 

  • Barbaro G, Di Lorenzo G, Asti A et al (1999a) Hepatocellular mitochondrial alterations in patients with chronic hepatitis C: ultrastructural and biochemical findings. Am J Gastroenterol 94:2198–2205

    CAS  PubMed  Google Scholar 

  • Barbaro G, Di Lorenzo G, Ribersani M et al (1999b) Serum ferritin and hepatic glutathione concentrations in chronic hepatitis C patients related to the hepatitis C virus genotype. J Hepatol 30:774–782

    CAS  PubMed  Google Scholar 

  • Bataller R, Paik YH, Lindquist JN et al (2004) Hepatitis C virus core and nonstructural proteins induce fibrogenic effects in hepatic stellate cells. Gastroenterology 126:529–540

    CAS  PubMed  Google Scholar 

  • Bernsmeier C, Duong FH, Christen V et al (2008) Virus-induced over-expression of protein phosphatase 2A inhibits insulin signalling in chronic hepatitis C. J Hepatol 49:429–440

    CAS  PubMed  Google Scholar 

  • Bonnard C, Durand A, Peyrol S et al (2008) Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 118:789–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bose SK, Shrivastava S, Meyer K et al (2012) Hepatitis C virus activates mTOR/S6K1 signaling pathway in inhibiting IRS-1 function for insulin resistance. J Virol 86:6315–6322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boudreau HE, Emerson SU, Korzeniowska A et al (2009) Hepatitis C virus (HCV) proteins induce NADPH oxidase 4 expression in a transforming growth factor beta-dependent manner: a new contributor to HCV-induced oxidative stress. J Virol 83:12934–12946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner DA (2009) Molecular pathogenesis of liver fibrosis. Trans Am Clin Climatol Assoc 120:361–368

    PubMed  PubMed Central  Google Scholar 

  • Bruno S, Crosignani A, Maisonneuve P et al (2007) Hepatitis C virus genotype 1b as a major risk factor associated with hepatocellular carcinoma in patients with cirrhosis: a seventeen-year prospective cohort study. Hepatology 46:1350–1356

    CAS  PubMed  Google Scholar 

  • Cacoub P, Delluc A, Saadoun D et al (2008) Anti-CD20 monoclonal antibody (rituximab) treatment for cryoglobulinemic vasculitis: where do we stand? Ann Rheum Dis 67:283–287

    CAS  PubMed  Google Scholar 

  • Cardin R, Saccoccio G, Masutti F et al (2001) DNA oxidative damage in leukocytes correlates with the severity of HCV-related liver disease: validation in an open population study. J Hepatol 34:587–592

    CAS  PubMed  Google Scholar 

  • Cheeseman KH, Slater TF (1993) An introduction to free radical biochemistry. Br Med Bull 49:481–493

    CAS  PubMed  Google Scholar 

  • Cheng Z, Guo S, Copps K et al (2009) Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nat Med 15:1307–1311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dal Maso L, Franceschi S (2006) Hepatitis C virus and risk of lymphoma and other lymphoid neoplasms: a meta-analysis of epidemiologic studies. Cancer Epidemiol Biomarkers Prev 15:2078–2085

    CAS  PubMed  Google Scholar 

  • Dalrymple LS, Koepsell T, Sampson J et al (2007) Hepatitis C virus infection and the prevalence of renal insufficiency. Clin J Am Soc Nephrol 2:715–721

    CAS  PubMed  Google Scholar 

  • Dammacco F, Sansonno D (1997) Mixed cryoglobulinemia as a model of systemic vasculitis. Clin Rev Allergy Immunol 15:97–119

    CAS  PubMed  Google Scholar 

  • Dammacco F, Sansonno D, Cornacchiulo V et al (1993) Hepatitis C virus infection and mixed cryoglobulinemia: a striking association. Int J Clin Lab Res 23:45–49

    CAS  PubMed  Google Scholar 

  • Dammacco F, Sansonno D, Piccoli C et al (2000) The lymphoid system in hepatitis C virus infection: autoimmunity, mixed cryoglobulinemia, and Overt B-cell malignancy. Semin Liver Dis 20:143–157

    CAS  PubMed  Google Scholar 

  • de Mochel NS, Seronello S, Wang SH et al (2010) Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection. Hepatology 52:47–59

    PubMed  PubMed Central  Google Scholar 

  • De Vita S, Quartuccio L, Fabris M (2008) Hepatitis C virus infection, mixed cryoglobulinemia and BLyS upregulation: targeting the infectious trigger, the autoimmune response, or both? Autoimmun Rev 8:95–99

    PubMed  Google Scholar 

  • Deng L, Adachi T, Kitayama K et al (2008) Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway. J Virol 82:10375–10385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng L, Shoji I, Ogawa W et al (2011) Hepatitis C virus infection promotes hepatic gluconeogenesis through an NS5A-mediated, FoxO1-dependent pathway. J Virol 85:8556–8568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dolganiuc A, Oak S, Kodys K et al (2004) Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation. Gastroenterology 127:1513–1524

    CAS  PubMed  Google Scholar 

  • Dong XC, Copps KD, Guo S et al (2008) Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab 8:65–76

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Souza R, Sabin CA, Foster GR (2005) Insulin resistance plays a significant role in liver fibrosis in chronic hepatitis C and in the response to antiviral therapy. Am J Gastroenterol 100:1509–1515

    PubMed  Google Scholar 

  • El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132:2557–2576

    CAS  PubMed  Google Scholar 

  • Eng FJ, Walewski JL, Klepper AL et al (2009) Internal initiation stimulates production of p8 minicore, a member of a newly discovered family of hepatitis C virus core protein isoforms. J Virol 83:3104–3114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fabrizi F, Bruchfeld A, Mangano S et al (2007) Interferon therapy for HCV-associated glomerulonephritis: meta-analysis of controlled trials. Int J Artif Organs 30:212–219

    CAS  PubMed  Google Scholar 

  • Farinati F, Cardin R, De Maria N et al (1995) Iron storage, lipid peroxidation and glutathione turnover in chronic anti-HCV positive hepatitis. J Hepatol 22:449–456

    CAS  PubMed  Google Scholar 

  • Fartoux L, Poujol-Robert A, Guechot J et al (2005) Insulin resistance is a cause of steatosis and fibrosis progression in chronic hepatitis C. Gut 54:1003–1008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferri C, Marzo E, Longombardo G et al (1993) Interferon-alpha in mixed cryoglobulinemia patients: a randomized, crossover-controlled trial. Blood 81:1132–1136

    CAS  PubMed  Google Scholar 

  • Ferri C, Sebastiani M, Giuggioli D et al (2004) Mixed cryoglobulinemia: demographic, clinical, and serologic features and survival in 231 patients. Semin Arthritis Rheum 33:355–374

    PubMed  Google Scholar 

  • Fletcher NF, Yang JP, Farquhar MJ et al (2010) Hepatitis C virus infection of neuroepithelioma cell lines. Gastroenterology 139:1365–1374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher NF, Wilson GK, Murray J et al (2012) Hepatitis C virus infects the endothelial cells of the blood-brain barrier. Gastroenterology 142:634–643

    CAS  PubMed  Google Scholar 

  • Forton DM, Karayiannis P, Mahmud N et al (2004) Identification of unique hepatitis C virus quasispecies in the central nervous system and comparative analysis of internal translational efficiency of brain, liver, and serum variants. J Virol 78:5170–5183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forton DM, Taylor-Robinson SD, Thomas HC (2006) Central nervous system changes in hepatitis C virus infection. Eur J Gastroenterol Hepatol 18:333–338

    PubMed  Google Scholar 

  • Fox JG, Feng Y, Theve EJ et al (2010) Gut microbes define liver cancer risk in mice exposed to chemical and viral transgenic hepatocarcinogens. Gut 59:88–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujino T, Nakamuta M, Yada R et al (2010) Expression profile of lipid metabolism-associated genes in hepatitis C virus-infected human liver. Hepatol Res 40:923–929

    CAS  PubMed  Google Scholar 

  • Fujita N, Horiike S, Sugimoto R et al (2007) Hepatic oxidative DNA damage correlates with iron overload in chronic hepatitis C patients. Free Radic Biol Med 42:353–362

    CAS  PubMed  Google Scholar 

  • Fujita N, Sugimoto R, Ma N et al (2008) Comparison of hepatic oxidative DNA damage in patients with chronic hepatitis B and C. J Viral Hepat 15:498–507

    CAS  PubMed  Google Scholar 

  • Furutani T, Hino K, Okuda M et al (2006) Hepatic iron overload induces hepatocellular carcinoma in transgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology 130:2087–2098

    CAS  PubMed  Google Scholar 

  • Garcia-Mediavilla MV, Sanchez-Campos S, Gonzalez-Perez P et al (2005) Differential contribution of hepatitis C virus NS5A and core proteins to the induction of oxidative and nitrosative stress in human hepatocyte-derived cells. J Hepatol 43:606–613

    CAS  PubMed  Google Scholar 

  • Garcia-Ruiz I, Solis-Munoz P, Gomez-Izquierdo E et al (2012) Protein tyrosine phosphatases are involved in the interferon resistance associated with insulin resistance in HepG2 cells and obese mice. J Biol Chem 287:19564–19573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano TP, Henderson L, Landgren O et al (2007) Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus. JAMA 297:2010–2017

    CAS  PubMed  Google Scholar 

  • Gisbert JP, Garcia-Buey L, Pajares JM et al (2003) Prevalence of hepatitis C virus infection in B-cell non-Hodgkin’s lymphoma: systematic review and meta-analysis. Gastroenterology 125:1723–1732

    PubMed  Google Scholar 

  • Gisbert JP, Garcia-Buey L, Pajares JM et al (2005) Systematic review: regression of lymphoproliferative disorders after treatment for hepatitis C infection. Aliment Pharmacol Ther 21:653–662

    CAS  PubMed  Google Scholar 

  • Gong G, Waris G, Tanveer R et al (2001) Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B. Proc Natl Acad Sci USA 98:9599–9604

    CAS  PubMed  Google Scholar 

  • Grover VP, Pavese N, Koh SB et al (2012) Cerebral microglial activation in patients with hepatitis C: in vivo evidence of neuroinflammation. J Viral Hepat 19:e89–e96

    CAS  PubMed  Google Scholar 

  • Guidotti LG, Chisari FV (2006) Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol 1:23–61

    CAS  PubMed  Google Scholar 

  • Haddad J, Deny P, Munz-Gotheil C et al (1992) Lymphocytic sialadenitis of Sjogren’s syndrome associated with chronic hepatitis C virus liver disease. Lancet 339:321–323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harris C, Herker E, Farese RV Jr et al (2011) Hepatitis C virus core protein decreases lipid droplet turnover: a mechanism for core-induced steatosis. J Biol Chem 286:42615–42625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herker E, Harris C, Hernandez C et al (2010) Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat Med 16:1295–1298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hermine O, Lefrere F, Bronowicki JP et al (2002) Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N Engl J Med 347:89–94

    CAS  PubMed  Google Scholar 

  • Hernandez-Gea V, Friedman SL (2011) Pathogenesis of liver fibrosis. Annu Rev Pathol 6:425–456

    CAS  PubMed  Google Scholar 

  • Honda A, Arai Y, Hirota N et al (1999) Hepatitis C virus structural proteins induce liver cell injury in transgenic mice. J Med Virol 59:281–289

    CAS  PubMed  Google Scholar 

  • Hope RG, McLauchlan J (2000) Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein. J Gen Virol 81:1913–1925

    CAS  PubMed  Google Scholar 

  • Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948

    CAS  PubMed  Google Scholar 

  • Hu Z, Muroyama R, Kowatari N et al (2009) Characteristic mutations in hepatitis C virus core gene related to the occurrence of hepatocellular carcinoma. Cancer Sci 100:2465–2468

    CAS  PubMed  Google Scholar 

  • Hui JM, Sud A, Farrell GC et al (2003) Insulin resistance is associated with chronic hepatitis C virus infection and fibrosis progression [corrected]. Gastroenterology 125:1695–1704

    CAS  PubMed  Google Scholar 

  • Hussain SP, Schwank J, Staib F et al (2007) TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 26:2166–2176

    CAS  PubMed  Google Scholar 

  • Ishido S, Hotta H (1998) Complex formation of the nonstructural protein 3 of hepatitis C virus with the p53 tumor suppressor. FEBS Lett 438:258–262

    CAS  PubMed  Google Scholar 

  • Jeannot E, Boorman GA, Kosyk O et al (2012) Increased incidence of aflatoxin B1-induced liver tumors in hepatitis virus C transgenic mice. Int J Cancer 130:1347–1356

    CAS  PubMed  Google Scholar 

  • Joyce MA, Walters KA, Lamb SE et al (2009) HCV induces oxidative and ER stress, and sensitizes infected cells to apoptosis in SCID/Alb-uPA mice. PLoS Pathog 5:e1000291

    PubMed  PubMed Central  Google Scholar 

  • Kamegaya Y, Hiasa Y, Zukerberg L et al (2005) Hepatitis C virus acts as a tumor accelerator by blocking apoptosis in a mouse model of hepatocarcinogenesis. Hepatology 41:660–667

    PubMed  Google Scholar 

  • Kanety H, Feinstein R, Papa MZ et al (1995) Tumor necrosis factor alpha-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J Biol Chem 270:23780–23784

    CAS  PubMed  Google Scholar 

  • Kannan RP, Hensley LL, Evers LE et al (2011) Hepatitis C virus infection causes cell cycle arrest at the level of initiation of mitosis. J Virol 85:7989–8001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kao CF, Chen SY, Chen JY et al (2004) Modulation of p53 transcription regulatory activity and post-translational modification by hepatitis C virus core protein. Oncogene 23:2472–2483

    CAS  PubMed  Google Scholar 

  • Kawaguchi T, Yoshida T, Harada M et al (2004) Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3. Am J Pathol 165:1499–1508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi T, Ide T, Taniguchi E et al (2007) Clearance of HCV improves insulin resistance, beta-cell function, and hepatic expression of insulin receptor substrate 1 and 2. Am J Gastroenterol 102:570–576

    PubMed  Google Scholar 

  • Kawamura T, Furusaka A, Koziel MJ et al (1997) Transgenic expression of hepatitis C virus structural proteins in the mouse. Hepatology 25:1014–1021

    CAS  PubMed  Google Scholar 

  • Kawamura H, Govindarajan S, Aswad F et al (2006) HCV core expression in hepatocytes protects against autoimmune liver injury and promotes liver regeneration in mice. Hepatology 44:936–944

    CAS  PubMed  Google Scholar 

  • Kitase A, Hino K, Furutani T et al (2005) In situ detection of oxidized n-3 polyunsaturated fatty acids in chronic hepatitis C: correlation with hepatic steatosis. J Gastroenterol 40:617–624

    CAS  PubMed  Google Scholar 

  • Kitay-Cohen Y, Amiel A, Hilzenrat N et al (2000) Bcl-2 rearrangement in patients with chronic hepatitis C associated with essential mixed cryoglobulinemia type II. Blood 96:2910–2912

    CAS  PubMed  Google Scholar 

  • Klopstock N, Katzenellenbogen M, Pappo O et al (2009) HCV tumor promoting effect is dependent on host genetic background. PLoS ONE 4:e5025

    PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Akuta N, Suzuki F et al (2010) Influence of amino-acid polymorphism in the core protein on progression of liver disease in patients infected with hepatitis C virus genotype 1b. J Med Virol 82:41–48

    CAS  PubMed  Google Scholar 

  • Korenaga M, Wang T, Li Y et al (2005) Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem 280:37481–37488

    CAS  PubMed  Google Scholar 

  • Kumar V, Kato N, Urabe Y et al (2011) Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nat Genet 43:455–458

    CAS  PubMed  Google Scholar 

  • Kwun HJ, Jung EY, Ahn JY et al (2001) p53-dependent transcriptional repression of p21(waf1) by hepatitis C virus NS3. J Gen Virol 82:2235–2241

    CAS  PubMed  Google Scholar 

  • Lan L, Gorke S, Rau SJ et al (2008) Hepatitis C virus infection sensitizes human hepatocytes to TRAIL-induced apoptosis in a caspase 9-dependent manner. J Immunol 181:4926–4935

    CAS  PubMed  Google Scholar 

  • Landau DA, Rosenzwajg M, Saadoun D et al (2009) The B lymphocyte stimulator receptor-ligand system in hepatitis C virus-induced B cell clonal disorders. Ann Rheum Dis 68:337–344

    CAS  PubMed  Google Scholar 

  • Laplante M, Sabatini DM (2009) An emerging role of mTOR in lipid biosynthesis. Curr Biol 19:R1046–R1052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leandro G, Mangia A, Hui J et al (2006) Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data. Gastroenterology 130:1636–1642

    PubMed  Google Scholar 

  • Lemon SM, McGivern DR (2012) Is hepatitis C virus carcinogenic? Gastroenterology 142:1274–1278

    PubMed  PubMed Central  Google Scholar 

  • Lerat H, Honda M, Beard MR et al (2002) Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology 122:352–365

    CAS  PubMed  Google Scholar 

  • Lerat H, Kammoun HL, Hainault I et al (2009) Hepatitis C virus proteins induce lipogenesis and defective triglyceride secretion in transgenic mice. J Biol Chem 284:33466–33474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Rechsteiner M (2001) Molecular dissection of the 11S REG (PA28) proteasome activators. Biochimie 83:373–383

    CAS  PubMed  Google Scholar 

  • Li K, Prow T, Lemon SM et al (2002) Cellular response to conditional expression of hepatitis C virus core protein in Huh7 cultured human hepatoma cells. Hepatology 35:1237–1246

    CAS  PubMed  Google Scholar 

  • Li Y, Boehning DF, Qian T et al (2007) Hepatitis C virus core protein increases mitochondrial ROS production by stimulation of Ca2+ uniporter activity. Faseb J 21:2474–2485

    CAS  PubMed  Google Scholar 

  • Liang Y, Shilagard T, Xiao SY et al (2009) Visualizing hepatitis C virus infections in human liver by two-photon microscopy. Gastroenterology 137:1448–1458

    CAS  PubMed  Google Scholar 

  • Lin W, Tsai WL, Shao RX et al (2010) Hepatitis C virus regulates transforming growth factor beta1 production through the generation of reactive oxygen species in a nuclear factor kappaB-dependent manner. Gastroenterology 138:2509–2518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lok AS, Everhart JE, Wright EC et al (2011) Maintenance peginterferon therapy and other factors associated with hepatocellular carcinoma in patients with advanced hepatitis C. Gastroenterology 140:840–849

    CAS  PubMed  Google Scholar 

  • Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307:384–387

    CAS  PubMed  Google Scholar 

  • Luedde T, Schwabe RF (2011) NF-kappaB in the liver–linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 8:108–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lunel F, Musset L, Cacoub P et al (1994) Cryoglobulinemia in chronic liver diseases: role of hepatitis C virus and liver damage. Gastroenterology 106:1291–1300

    CAS  PubMed  Google Scholar 

  • Machado MV, Oliveira AG, Cortez-Pinto H (2011) Hepatic steatosis in hepatitis B virus infected patients: meta-analysis of risk factors and comparison with hepatitis C infected patients. J Gastroenterol Hepatol 26:1361–1367

    PubMed  Google Scholar 

  • Machida K, Cheng KT, Sung VM et al (2004) Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes. Proc Natl Acad Sci USA 101:4262–4267

    CAS  PubMed  Google Scholar 

  • Machida K, Cheng KT, Lai CK et al (2006) Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation. J Virol 80:7199–7207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Machida K, Tsukamoto H, Mkrtchyan H et al (2009) Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog. Proc Natl Acad Sci USA 106:1548–1553

    CAS  PubMed  Google Scholar 

  • Majumder M, Ghosh AK, Steele R et al (2001) Hepatitis C virus NS5A physically associates with p53 and regulates p21/waf1 gene expression in a p53-dependent manner. J Virol 75:1401–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masaki T, Suzuki R, Murakami K et al (2008) Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. J Virol 82:7964–7976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mason AL, Lau JY, Hoang N et al (1999) Association of diabetes mellitus and chronic hepatitis C virus infection. Hepatology 29:328–333

    CAS  PubMed  Google Scholar 

  • Mayhew CN, Carter SL, Fox SR et al (2007) RB loss abrogates cell cycle control and genome integrity to promote liver tumorigenesis. Gastroenterology 133:976–984

    CAS  PubMed  Google Scholar 

  • Mazzocca A, Sciammetta SC, Carloni V et al (2005) Binding of hepatitis C virus envelope protein E2 to CD81 up-regulates matrix metalloproteinase-2 in human hepatic stellate cells. J Biol Chem 280:11329–11339

    CAS  PubMed  Google Scholar 

  • McClendon AK, Dean JL, Ertel A et al (2011) RB and p53 cooperate to prevent liver tumorigenesis in response to tissue damage. Gastroenterology 141:1439–1450

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGivern DR, Lemon SM (2009) Tumor suppressors, chromosomal instability, and hepatitis C virus-associated liver cancer. Annu Rev Pathol 4:399–415

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGivern DR, Villanueva RA, Chinnaswamy S et al (2009) Impaired replication of hepatitis C virus containing mutations in a conserved NS5B retinoblastoma protein-binding motif. J Virol 83:7422–7433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merkle M, Ribeiro A, Köppel S et al (2012) TLR3-dependent immune regulatory functions of human mesangial cells. Cell Mol Immunol 9:334–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miki D, Ochi H, Hayes CN et al (2011) Variation in the DEPDC5 locus is associated with progression to hepatocellular carcinoma in chronic hepatitis C virus carriers. Nat Genet 43:797–800

    CAS  PubMed  Google Scholar 

  • Milward A, Mankouri J, Harris M (2010) Hepatitis C virus NS5A protein interacts with beta-catenin and stimulates its transcriptional activity in a phosphoinositide-3 kinase-dependent fashion. J Gen Virol 91:373–381

    CAS  PubMed  Google Scholar 

  • Misiani R, Bellavita P, Fenili D et al (1994) Interferon alfa-2a therapy in cryoglobulinemia associated with hepatitis C virus. N Engl J Med 330:751–756

    CAS  PubMed  Google Scholar 

  • Mitsuyoshi H, Itoh Y, Sumida Y et al (2008) Evidence of oxidative stress as a cofactor in the development of insulin resistance in patients with chronic hepatitis C. Hepatol Res 38:348–353

    CAS  PubMed  Google Scholar 

  • Miyamoto H, Moriishi K, Moriya K et al (2007) Involvement of the PA28gamma-dependent pathway in insulin resistance induced by hepatitis C virus core protein. J Virol 81:1727–1735

    CAS  PubMed  Google Scholar 

  • Miyanari Y, Atsuzawa K, Usuda N et al (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9:1089–1097

    CAS  PubMed  Google Scholar 

  • Monetti M, Levin MC, Watt MJ et al (2007) Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab 6:69–78

    CAS  PubMed  Google Scholar 

  • Monti G, Pioltelli P, Saccardo F et al (2005) Incidence and characteristics of non-Hodgkin lymphomas in a multicenter case file of patients with hepatitis C virus-related symptomatic mixed cryoglobulinemias. Arch Intern Med 165:101–105

    PubMed  Google Scholar 

  • Moriishi K, Okabayashi T, Nakai K et al (2003) Proteasome activator PA28gamma-dependent nuclear retention and degradation of hepatitis C virus core protein. J Virol 77:10237–10249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moriishi K, Mochizuki R, Moriya K et al (2007) Critical role of PA28gamma in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proc Natl Acad Sci USA 104:1661–1666

    CAS  PubMed  Google Scholar 

  • Moriishi K, Shoji I, Mori Y et al (2010) Involvement of PA28gamma in the propagation of hepatitis C virus. Hepatology 52:411–420

    CAS  PubMed  Google Scholar 

  • Moriya K, Fujie H, Shintani Y et al (1998) The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 4:1065–1067

    CAS  PubMed  Google Scholar 

  • Moriya K, Nakagawa K, Santa T et al (2001a) Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res 61:4365–4370

    CAS  PubMed  Google Scholar 

  • Moriya K, Todoroki T, Tsutsumi T et al (2001b) Increase in the concentration of carbon 18 monounsaturated fatty acids in the liver with hepatitis C: analysis in transgenic mice and humans. Biochem Biophys Res Commun 281:1207–1212

    CAS  PubMed  Google Scholar 

  • Mousseau G, Kota S, Takahashi V et al (2011) Dimerization-driven interaction of hepatitis C virus core protein with NS3 helicase. J Gen Virol 92:101–111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munakata T, Nakamura M, Liang Y et al (2005) Down-regulation of the retinoblastoma tumor suppressor by the hepatitis C virus NS5B RNA-dependent RNA polymerase. Proc Natl Acad Sci USA 102:18159–18164

    CAS  PubMed  Google Scholar 

  • Munakata T, Liang Y, Kim S et al (2007) Hepatitis C virus induces E6AP-dependent degradation of the retinoblastoma protein. PLoS Pathog 3:1335–1347

    CAS  PubMed  Google Scholar 

  • Muzzi A, Leandro G, Rubbia-Brandt L et al (2005) Insulin resistance is associated with liver fibrosis in non-diabetic chronic hepatitis C patients. J Hepatol 42:41–46

    CAS  PubMed  Google Scholar 

  • Naas T, Ghorbani M, Alvarez-Maya I et al (2005) Characterization of liver histopathology in a transgenic mouse model expressing genotype 1a hepatitis C virus core and envelope proteins 1 and 2. J Gen Virol 86:2185–2196

    CAS  PubMed  Google Scholar 

  • Nakamoto S, Imazeki F, Fukai K et al (2010) Association between mutations in the core region of hepatitis C virus genotype 1 and hepatocellular carcinoma development. J Hepatol 52:72–78

    CAS  PubMed  Google Scholar 

  • Oem JK, Jackel-Cram C, Li YP et al (2008) Activation of sterol regulatory element-binding protein 1c and fatty acid synthase transcription by hepatitis C virus non-structural protein 2. J Gen Virol 89:1225–1230

    CAS  PubMed  Google Scholar 

  • Ohata K, Hamasaki K, Toriyama K et al (2003) Hepatic steatosis is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis C virus infection. Cancer 97:3036–3043

    PubMed  Google Scholar 

  • Okada K, Takishita Y, Shimomura H et al (1996) Detection of hepatitis C virus core protein in the glomeruli of patients with membranous glomerulonephritis. Clin Nephrol 45:71–76

    CAS  PubMed  Google Scholar 

  • Okuda M, Li K, Beard MR et al (2002) Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122:366–375

    CAS  PubMed  Google Scholar 

  • Pal S, Sullivan DG, Kim S et al (2006) Productive replication of hepatitis C virus in perihepatic lymph nodes in vivo: implications of HCV lymphotropism. Gastroenterology 130:1107–1116

    PubMed  Google Scholar 

  • Park CY, Choi SH, Kang SM et al (2009) Nonstructural 5A protein activates beta-catenin signaling cascades: implication of hepatitis C virus-induced liver pathogenesis. J Hepatol 51:853–864

    CAS  PubMed  Google Scholar 

  • Patton HM, Patel K, Behling C et al (2004) The impact of steatosis on disease progression and early and sustained treatment response in chronic hepatitis C patients. J Hepatol 40:484–490

    PubMed  Google Scholar 

  • Pawlotsky JM, Ben Yahia M, Andre C et al (1994) Immunological disorders in C virus chronic active hepatitis: a prospective case-control study. Hepatology 19:841–848

    CAS  PubMed  Google Scholar 

  • Pekow JR, Bhan AK, Zheng H et al (2007) Hepatic steatosis is associated with increased frequency of hepatocellular carcinoma in patients with hepatitis C-related cirrhosis. Cancer 109:2490–2496

    PubMed  Google Scholar 

  • Pereira Tde A, Witek RP, Syn WK et al (2010) Viral factors induce Hedgehog pathway activation in humans with viral hepatitis, cirrhosis, and hepatocellular carcinoma. Lab Invest 90:1690–1703

    PubMed  Google Scholar 

  • Perlemuter G, Sabile A, Letteron P et al (2002) Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis. Faseb J 16:185–194

    CAS  PubMed  Google Scholar 

  • Persico M, Masarone M, La Mura V et al (2009) Clinical expression of insulin resistance in hepatitis C and B virus-related chronic hepatitis: differences and similarities. World J Gastroenterol 15:462–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polyak SJ, Khabar KS, Rezeiq M et al (2001) Elevated levels of interleukin-8 in serum are associated with hepatitis C virus infection and resistance to interferon therapy. J Virol 75:6209–6211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poynard T, Ratziu V, McHutchison J et al (2003) Effect of treatment with peginterferon or interferon alfa-2b and ribavirin on steatosis in patients infected with hepatitis C. Hepatology 38:75–85

    CAS  PubMed  Google Scholar 

  • Qadri I, Iwahashi M, Simon F (2002) Hepatitis C virus NS5A protein binds TBP and p53, inhibiting their DNA binding and p53 interactions with TBP and ERCC3. Biochim Biophys Acta 1592:193–204

    CAS  PubMed  Google Scholar 

  • Qiu W, Wang X, Leibowitz B et al (2011) PUMA-mediated apoptosis drives chemical hepatocarcinogenesis in mice. Hepatology 54:1249–1258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raimondi S, Bruno S, Mondelli MU et al (2009) Hepatitis C virus genotype 1b as a risk factor for hepatocellular carcinoma development: a meta-analysis. J Hepatol 50:1142–1154

    CAS  PubMed  Google Scholar 

  • Ratziu V, Munteanu M, Charlotte F et al (2003) Fibrogenic impact of high serum glucose in chronic hepatitis C. J Hepatol 39:1049–1055

    CAS  PubMed  Google Scholar 

  • Rubbia-Brandt L, Leandro G, Spahr L et al (2001) Liver steatosis in chronic hepatitis C: a morphological sign suggesting infection with HCV genotype 3. Histopathology 39:119–124

    CAS  PubMed  Google Scholar 

  • Ryu SH, Fan X, Xu Y et al (2009) Lack of association between genotypes and subtypes of HCV and occurrence of hepatocellular carcinoma in Egypt. J Med Virol 81:844–847

    PubMed  Google Scholar 

  • Saadoun D, Suarez F, Lefrere F et al (2005) Splenic lymphoma with villous lymphocytes, associated with type II cryoglobulinemia and HCV infection: a new entity? Blood 105:74–76

    CAS  PubMed  Google Scholar 

  • Saadoun D, Resche-Rigon M, Thibault V et al (2006) Antiviral therapy for hepatitis C virus–associated mixed cryoglobulinemia vasculitis: a long-term followup study. Arthritis Rheum 54:3696–3706

    CAS  PubMed  Google Scholar 

  • Saadoun D, Delluc A, Piette JC et al (2008) Treatment of hepatitis C-associated mixed cryoglobulinemia vasculitis. Curr Opin Rheumatol 20:23–28

    CAS  PubMed  Google Scholar 

  • Saito T, Owen DM, Jiang F et al (2008) Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454:523–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sansonno D, Cornacchiulo V, Iacobelli AR et al (1995) Localization of hepatitis C virus antigens in liver and skin tissues of chronic hepatitis C virus-infected patients with mixed cryoglobulinemia. Hepatology 21:305–312

    CAS  PubMed  Google Scholar 

  • Sansonno D, De Vita S, Iacobelli AR et al (1998) Clonal analysis of intrahepatic B cells from HCV-infected patients with and without mixed cryoglobulinemia. J Immunol 160:3594–3601

    CAS  PubMed  Google Scholar 

  • Sansonno D, Lauletta G, Nisi L et al (2003) Non-enveloped HCV core protein as constitutive antigen of cold-precipitable immune complexes in type II mixed cryoglobulinaemia. Clin Exp Immunol 133:275–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Kato J, Takimoto R et al (2006) Hepatitis C virus core protein promotes proliferation of human hepatoma cells through enhancement of transforming growth factor alpha expression via activation of nuclear factor-kappaB. Gut 55:1801–1808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze-Krebs A, Preimel D, Popov Y et al (2005) Hepatitis C virus-replicating hepatocytes induce fibrogenic activation of hepatic stellate cells. Gastroenterology 129:246–258

    CAS  PubMed  Google Scholar 

  • Sène D, Limal N, Cacoub P (2004) Hepatitis C virus-associated extrahepatic manifestations: a review. Metab Brain Dis 19:357–381

    PubMed  Google Scholar 

  • Seto WK, Lai CL, Fung J et al (2010) Natural history of chronic hepatitis C: genotype 1 versus genotype 6. J Hepatol 53:444–448

    CAS  PubMed  Google Scholar 

  • Shi ST, Polyak SJ, Tu H et al (2002) Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology 292:198–210

    CAS  PubMed  Google Scholar 

  • Shintani Y, Fujie H, Miyoshi H et al (2004) Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology 126:840–848

    CAS  PubMed  Google Scholar 

  • Shirakura M, Murakami K, Ichimura T et al (2007) E6AP ubiquitin ligase mediates ubiquitylation and degradation of hepatitis C virus core protein. J Virol 81:1174–1185

    CAS  PubMed  Google Scholar 

  • Simo R, Lecube A, Genesca J et al (2006) Sustained virological response correlates with reduction in the incidence of glucose abnormalities in patients with chronic hepatitis C virus infection. Diabetes Care 29:2462–2466

    PubMed  Google Scholar 

  • Stokes MB, Chawla H, Brody RI et al (1997) Immune complex glomerulonephritis in patients coinfected with human immunodeficiency virus and hepatitis C virus. Am J Kidney Dis 29:514–525

    CAS  PubMed  Google Scholar 

  • Storozhevykh TP, Senilova YE, Persiyantseva NA et al (2007) Mitochondrial respiratory chain is involved in insulin-stimulated hydrogen peroxide production and plays an integral role in insulin receptor autophosphorylation in neurons. BMC Neurosci 8:84

    PubMed  PubMed Central  Google Scholar 

  • Street A, Macdonald A, McCormick C et al (2005) Hepatitis C virus NS5A-mediated activation of phosphoinositide 3-kinase results in stabilization of cellular beta-catenin and stimulation of beta-catenin-responsive transcription. J Virol 79:5006–5016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su AI, Pezacki JP, Wodicka L et al (2002) Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci USA 99:15669–15674

    CAS  PubMed  Google Scholar 

  • Sun B, Karin M (2008) NF-kappaB signaling, liver disease and hepatoprotective agents. Oncogene 27:6228–6244

    CAS  PubMed  Google Scholar 

  • Suzuki R, Moriishi K, Fukuda K et al (2009) Proteasomal turnover of hepatitis C virus core protein is regulated by two distinct mechanisms: a ubiquitin-dependent mechanism and a ubiquitin-independent but PA28gamma-dependent mechanism. J Virol 83:2389–2392

    CAS  PubMed  Google Scholar 

  • Tai DI, Tsai SL, Chen YM et al (2000) Activation of nuclear factor kappaB in hepatitis C virus infection: implications for pathogenesis and hepatocarcinogenesis. Hepatology 31:656–664

    CAS  PubMed  Google Scholar 

  • Tanaka M, Nagano-Fujii M, Deng L et al (2006) Single-point mutations of hepatitis C virus NS3 that impair p53 interaction and anti-apoptotic activity of NS3. Biochem Biophys Res Commun 340:792–799

    CAS  PubMed  Google Scholar 

  • Tanaka N, Moriya K, Kiyosawa K et al (2008) PPARalpha activation is essential for HCV core protein-induced hepatic steatosis and hepatocellular carcinoma in mice. J Clin Invest 118:683–694

    PubMed  PubMed Central  Google Scholar 

  • Taniguchi H, Kato N, Otsuka M et al (2004) Hepatitis C virus core protein upregulates transforming growth factor-beta 1 transcription. J Med Virol 72:52–59

    CAS  PubMed  Google Scholar 

  • Thoren F, Romero A, Lindh M et al (2004) A hepatitis C virus-encoded, nonstructural protein (NS3) triggers dysfunction and apoptosis in lymphocytes: role of NADPH oxidase-derived oxygen radicals. J Leukoc Biol 76:1180–1186

    CAS  PubMed  Google Scholar 

  • Thorgeirsson SS, Grisham JW (2002) Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31:339–346

    CAS  PubMed  Google Scholar 

  • Tsutsumi T, Matsuda M, Aizaki H et al (2009) Proteomics analysis of mitochondrial proteins reveals overexpression of a mitochondrial protein chaperon, prohibitin, in cells expressing hepatitis C virus core protein. Hepatology 50:378–386

    CAS  PubMed  Google Scholar 

  • Veldt BJ, Chen W, Heathcote EJ et al (2008) Increased risk of hepatocellular carcinoma among patients with hepatitis C cirrhosis and diabetes mellitus. Hepatology 47:1856–1862

    PubMed  Google Scholar 

  • Walters KA, Syder AJ, Lederer SL et al (2009) Genomic analysis reveals a potential role for cell cycle perturbation in HCV-mediated apoptosis of cultured hepatocytes. PLoS Pathog 5:e1000269

    PubMed  PubMed Central  Google Scholar 

  • Wang D, Sul HS (1998) Insulin stimulation of the fatty acid synthase promoter is mediated by the phosphatidylinositol 3-kinase pathway. Involvement of protein kinase B/Akt. J Biol Chem 273:25420–25426

    CAS  PubMed  Google Scholar 

  • Wang AG, Lee DS, Moon HB et al (2009a) Non-structural 5A protein of hepatitis C virus induces a range of liver pathology in transgenic mice. J Pathol 219:253–262

    CAS  PubMed  Google Scholar 

  • Wang CS, Yao WJ, Chang TT et al (2009b) The impact of type 2 diabetes on the development of hepatocellular carcinoma in different viral hepatitis statuses. Cancer Epidemiol Biomarkers Prev 18:2054–2060

    CAS  PubMed  Google Scholar 

  • Wang N, Liang Y, Devaraj S et al (2009c) Toll-like receptor 3 mediates establishment of an antiviral state against hepatitis C virus in hepatoma cells. J Virol 83:9824–9834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waris G, Tardif KD, Siddiqui A (2002) Endoplasmic reticulum (ER) stress: hepatitis C virus induces an ER-nucleus signal transduction pathway and activates NF-kappaB and STAT-3. Biochem Pharmacol 64:1425–1430

    CAS  PubMed  Google Scholar 

  • Waris G, Livolsi A, Imbert V et al (2003) Hepatitis C virus NS5A and subgenomic replicon activate NF-kappaB via tyrosine phosphorylation of IkappaBalpha and its degradation by calpain protease. J Biol Chem 278:40778–40787

    CAS  PubMed  Google Scholar 

  • Waris G, Felmlee DJ, Negro F et al (2007) Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates their phosphorylation via oxidative stress. J Virol 81:8122–8130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westin J, Lagging M, Dhillon AP et al (2007) Impact of hepatic steatosis on viral kinetics and treatment outcome during antiviral treatment of chronic HCV infection. J Viral Hepat 14:29–35

    CAS  PubMed  Google Scholar 

  • Wörnle M, Schmid H, Banas B et al (2006) Novel role of toll-like receptor 3 in hepatitis C-associated glomerulonephritis. Am J Pathol 168:370–385

    PubMed  PubMed Central  Google Scholar 

  • Xu J, Kim HT, Ma Y et al (2008) Trauma and hemorrhage-induced acute hepatic insulin resistance: dominant role of tumor necrosis factor-alpha. Endocrinology 149:2369–2382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi A, Tazuma S, Nishioka T et al (2005) Hepatitis C virus core protein modulates fatty acid metabolism and thereby causes lipid accumulation in the liver. Dig Dis Sci 50:1361–1371

    CAS  PubMed  Google Scholar 

  • Yamaji S, Zhang M, Zhang J et al (2010) Hepatocyte-specific deletion of DDB1 induces liver regeneration and tumorigenesis. Proc Natl Acad Sci USA 107:22237–22242

    CAS  PubMed  Google Scholar 

  • Yu T, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA 103:2653–2658

    CAS  PubMed  Google Scholar 

  • Zhang J, Gao Z, Yin J et al (2008) S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-(alpha) signaling through IKK2. J Biol Chem 283:35375–35382

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley M. Lemon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamane, D., McGivern, D.R., Masaki, T., Lemon, S.M. (2013). Liver Injury and Disease Pathogenesis in Chronic Hepatitis C. In: Bartenschlager, R. (eds) Hepatitis C Virus: From Molecular Virology to Antiviral Therapy. Current Topics in Microbiology and Immunology, vol 369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27340-7_11

Download citation

Publish with us

Policies and ethics