Advertisement

On Subalgebras of the Centerless Generalized Virasoro Algebra

  • Qi Xianlong
  • Wang Xiandong
  • Sun Nan
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 143)

Abstract

In this paper, \(\overline{vir}[G]=C-{\it span}\{d_i|i\in{G}=Z+Z\sqrt{2}\}\) with bracket [ , ] given by [d i ,d j ] = (j − i)d i + j ,i,j ∈ G. This is a Lie algebra. We will obtain some simple subalgebrs of \(\overline{vir}[G]\) and discuss some isomorphisms between these subalgebras.

Keywords

Simple subalgebra isomorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Humphreys, J.E.: Introduction to Lie Algebras and Representations Theory, pp. 1–10. Springer-Verlag New York Inc., New York (1972)Google Scholar
  2. 2.
    Virasoro, M.A.: Subsidiary conditions and ghosts in dual-resonance models. Phys. Rev., D1, 2933–2936 (1970)Google Scholar
  3. 3.
    Su, Y., Zhao, K.: Generalized virasoro and super-virasoro algebras and modules of the intermediate series. J. Algebra 252, 1–19 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Osborn, J.M.: New simple infinite-dimensional Lie algebras of characteristic 0. J. Algebra 185, 820–835 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Song, G., Su, Y.: Lie bialgebras of generalized Witt type. (2006)Google Scholar
  6. 6.
    Yu, D.: Isomorphism and generating set of subalgebras of the virasoro algebra. J. Sys. Sci. & Math. Scis., 24–29 (2008)Google Scholar
  7. 7.
    Su, Y., Zhao, K.: Generalized Virasoro and super-Virasoro algebras and modules of intermediateseries (2002)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.College of MathematicsQing Dao UniversityQingdaoP.R. China

Personalised recommendations