On Subalgebras of the Centerless Generalized Virasoro Algebra

  • Qi Xianlong
  • Wang Xiandong
  • Sun Nan
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 143)


In this paper, \(\overline{vir}[G]=C-{\it span}\{d_i|i\in{G}=Z+Z\sqrt{2}\}\) with bracket [ , ] given by [d i ,d j ] = (j − i)d i + j ,i,j ∈ G. This is a Lie algebra. We will obtain some simple subalgebrs of \(\overline{vir}[G]\) and discuss some isomorphisms between these subalgebras.


Simple subalgebra isomorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Humphreys, J.E.: Introduction to Lie Algebras and Representations Theory, pp. 1–10. Springer-Verlag New York Inc., New York (1972)Google Scholar
  2. 2.
    Virasoro, M.A.: Subsidiary conditions and ghosts in dual-resonance models. Phys. Rev., D1, 2933–2936 (1970)Google Scholar
  3. 3.
    Su, Y., Zhao, K.: Generalized virasoro and super-virasoro algebras and modules of the intermediate series. J. Algebra 252, 1–19 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Osborn, J.M.: New simple infinite-dimensional Lie algebras of characteristic 0. J. Algebra 185, 820–835 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Song, G., Su, Y.: Lie bialgebras of generalized Witt type. (2006)Google Scholar
  6. 6.
    Yu, D.: Isomorphism and generating set of subalgebras of the virasoro algebra. J. Sys. Sci. & Math. Scis., 24–29 (2008)Google Scholar
  7. 7.
    Su, Y., Zhao, K.: Generalized Virasoro and super-Virasoro algebras and modules of intermediateseries (2002)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.College of MathematicsQing Dao UniversityQingdaoP.R. China

Personalised recommendations