Additivity of Lie Triple Isomorphisms on Standard Operator Subalgebras of Nest Algebras

  • Hua Jiang
  • Peisheng Ji
  • Xiaolu Sun
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 143)


Let A be a standard operator subalgebra of nest algebra which does not contain the identity operator, acting on a Hilbert space of dimension greater than one. If φ is a bijective Lie triple map from A onto an arbitrary algebra, that is \(\phi(\big{[{[a,b]},c\big]})\)=\(\big{[[\phi(a),\phi(b)],\phi(c)\big]}\),for all a,b,cA,then φ is additive.


Lie triple isomorphism Additivity standard operator subalgebra of nest algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davision, K.R.: Nest Algebras: Pitman Research Notes in Mathematics Series, vol. 191. Longman Scientific and Technical, Burnt mill harlow, Essex, UK (1988)Google Scholar
  2. 2.
    Jacobson, N., Rickart, C.E.: Jordan homomorphisms rings. Tran. Amer. Math. Soc. 69, 479–502 (1950)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Ji, P., Wang, L.: Lie triple derivations of TUHF algebras. Linear Algebra Appl. 403, 399–408 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ji, P., Jiang, H.: Nonlinear Lie triple derivations on von Neumann algebras (submitted)Google Scholar
  5. 5.
    Lu, F.: Lie triple derivations of nest algebras. Math. Nachr. 280, 882–887 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Miers, C.R.: Lie *-triple homomorphisms into von Neumann algebras. Proc. Amer. Math. Soc. 58, 169–172 (1976)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Miers, C.R.: Lie triple derivations of VN algebras. Proc. Amer. Math. Soc. 71, 57–61 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Wang, H.T., Li, Q.G.: Lie triple derivation of the Lie algebra of strictly upper triangular matrix over a commutative ring. Linear Algebra Appl. 430, 66–77 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Zhang, J.H., Wu, B.W., Cao, H.X.: Lie triple derivations of nest algebras. Linear Algebra Appl. 416, 559–567 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.College of MathematicsQing Dao UniversityQingdaoP.R. China

Personalised recommendations