Probabilistic Inference over Image Networks

  • Claudio Taranto
  • Nicola Di Mauro
  • Floriana Esposito
Part of the Communications in Computer and Information Science book series (CCIS, volume 249)


Digital Libraries contain collections of multimedia objects providing services for the management, sharing and retrieval. Involved objects have two levels of complexity: the former refers to the inner object complexity while the latter takes into account the implicit/explicit relationships among objects. Traditional machine learning classifiers do not consider the relationships among objects assuming them independent and identically distributed. Recently, link-based classification methods have been proposed, that try to classify objects exploiting their relationships (links). In this paper, we deal with objects corresponding to digital images, even if the proposed approach can be naturally applied to different kind of multimedia objects. Relationships can be expressed among the features of the same image or among features belonging to different images. The aim of this work is to verify whether a link-based classifier based on a Statistical Relational Learning (SRL) language can improve the accuracy of a classical k-nearest neighbour approach. Experiments will show that the modelling of the relationships in a real-word dataset using a SRL model reduces the classification error.


Logic Program Digital Library Query Image Latent Dirichlet Allocation Vector Space Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Candela, L., Castelli, D., Ferro, N., Ioannidis, Y., Koutrika, G., Meghini, C., Pagano, P., Ross, S., Soergel, D., Agosti, M., Dobreva, M., Katifori, V., Schuldt, H.: The DELOS Digital Library Reference Model. Foundations for Digital Libraries (2007)Google Scholar
  2. 2.
    Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  3. 3.
    Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. The MIT Press (2007)Google Scholar
  4. 4.
    Getoor, L., Diehl, C.P.: Link mining: a survey. SIGKDD Explorations Newsletter 7, 3–12 (2005)CrossRefGoogle Scholar
  5. 5.
    Getoor, L.: Link-based Classification. In: Maulik, U., Holder, L., Cook, D. (eds.) Advanced Methods for Knowledge Discovery from Complex Data. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Huang, J., Kumar, S.R., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using color correlograms. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 762–768 (1997)Google Scholar
  7. 7.
    Raedt, L.D., Kimmig, A., Toivonen, H.: Problog: a probabilistic prolog and its application in link discovery. In: Proceedings of 20th International Joint Conference on Artificial Intelligence, pp. 2468–2473. AAAI Press (2007)Google Scholar
  8. 8.
    Nowak, E., Jurie, F., Triggs, B.: Sampling Strategies for Bag-of-Features Image Classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 490–503. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Hofmann, T.: Probabilistic latent semantic analysis. In: Proceeding of the Fifteenth Conference on Uncertainty in Artificial Intelligence (1995)Google Scholar
  10. 10.
    Blei, D.M., Ng, A.Y., Jordan, M.I., Lafferty, J.: Latent dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)zbMATHGoogle Scholar
  11. 11.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communication ACM 18, 613–620 (1975)CrossRefzbMATHGoogle Scholar
  12. 12.
    Burl, M.C., Weber, M., Perona, P.: A Probabilistic Approach to Object Recognition Using Local Photometry and Global Geometry. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998, Part II. LNCS, vol. 1407, pp. 628–641. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 264–271 (2003)Google Scholar
  14. 14.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. International Journal of Pattern Recognition and Artificial Intelligence, 265–298 (2004)Google Scholar
  15. 15.
    Sen, P., Namata, G.M., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classification in network data. AI Magazine 29, 93–106 (2008)Google Scholar
  16. 16.
    Macskassy, S.A., Provost, F.: A simple relational classifier. In: Proceedings of the Second Workshop on Multi-Relational Data Mining, pp. 64–76 (2003)Google Scholar
  17. 17.
    Macskassy, S.A., Provost, F.: Classification in networked data: A toolkit and a univariate case study. Journal of Machine Learning Research 8, 935–983 (2007)Google Scholar
  18. 18.
    Chakrabarti, S., Dom, B., Indyk, P.: Enhanced hypertext categorization using hyperlinks. In: Proceedings SIGMOD International Conference on Management of Data, pp. 307–318. ACM (1998)Google Scholar
  19. 19.
    Lu, Q., Getoor, L.: Link-based classification. In: Proceedings of the International Conference on Machine Learning, pp. 496–503 (2003)Google Scholar
  20. 20.
    Taranto, C., Di Mauro, N., Ferilli, S., Esposito, F.: Approximate image color correlograms. In: Proceedings of the International Conference on Multimedia, MM 2010, pp. 1127–1130. ACM (2010)Google Scholar
  21. 21.
    Poole, D.: Abducing through negation as failure: stable models within the independent choice logic. J. Log. Program. 44, 5–35 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kameya, Y., Ueda, N., Sato, T.: A Graphical Method for Parameter Learning of Symbolic-Statistical Models. In: Arikawa, S., Nakata, I. (eds.) DS 1999. LNCS (LNAI), vol. 1721, pp. 264–276. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  23. 23.
    Costa, V.S., Page, D., Qazi, M., Cussens, J.: CLP(BN): Constraint logic programming for probabilistic knowledge. In: Proceedings of the Nineteenth International Conference on Uncertainty in AI, pp. 517–524 (2003)Google Scholar
  24. 24.
    Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. The MIT Press (2009)Google Scholar
  25. 25.
    Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Proceedings of the 12th International Confernce on Logic Programming, pp. 715–729. MIT Press (1995)Google Scholar
  26. 26.
    Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the Efficient Execution of ProbLog Programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 175–189. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Shterionov, D., Kimmig, A., Mantadelis, T., Janssens, G.: DNF sampling for problog inference. In: International Colloquium on Implementation of Constraint and Logic Programming Systems (2010)Google Scholar
  28. 28.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  29. 29.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: IEEE Computer Vision and Pattern Recognition, Workshop on Generative-Model Based Vision (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Claudio Taranto
    • 1
  • Nicola Di Mauro
    • 1
  • Floriana Esposito
    • 1
  1. 1.Department of Computer ScienceUniversity of Bari “Aldo Moro”BariItaly

Personalised recommendations