Land Use/Land Cover Classification Based on Multi-resolution Remote Sensing Data

  • Yuechen Liu
  • Zhiyuan Pei
  • Quan Wu
  • Lin Guo
  • Hu Zhao
  • Xiwei Chen
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 369)


The paper summarized pre-existing research works relating to land use/land cover classification based on multi-resolution remote sensing data. According to the features of regions, we carried out of the land use/land cover classification of level III classes in 148 group of Xinjiang agricultural reclamation eighth division. The land use/land cover classification system divided land in study area into 6 level I classes, 16 level II classes, and 22 level III classes with multi-spatial-resolution remote sensing data. Thus we set up a set of land use/ land cover remote sensing classification and corresponding code system.


remote sensing classification land use/land cover classification system code system 


  1. 1.
    Xiao, X., et al.: The Application of the Quickbird Remote Sensing Images to the Regulation of Kinds of Land Use——By the Example of Anju District, Suining. Acta Geologica Sichuan 28(4), 331–334 (2008)Google Scholar
  2. 2.
    Xing, Y., et al.: Investigation on Land Use Based on QuickBird Image. Journal of Anhui Agricultural Sciences 35(10), 3001–3002, 3004 (2007)Google Scholar
  3. 3.
    Lv, X., et al.: Application Study on QuickBird Image in Investigation of Urban Land Use Status. Tianjin Agricultural Sciences 14(2), 12–15 (2008)Google Scholar
  4. 4.
    Ratanopad, S., Kainz, W.: Land Cover Classification and Monitoring in Northeast Thailand Using LandSat 5 TM Data. International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 1(2), 137–144 (2006)Google Scholar
  5. 5.
    He, Y., et al.: FAO/UNEP-Land Cover Classification System (LCCS) and Use for Reference. China Land Science 19(6), 45–49 (2005)Google Scholar
  6. 6.
    Xiao, P., et al.: A Land Use/ Cover Classification System Based on Medium Resolution Remote Sensing Data. China Land Science 20(2), 33–38 (2006)Google Scholar
  7. 7.
    Clevers, J., Bartholomeus, H., Mücher, S., de Wit, A.: Land Cover Classification with the Medium Resolution Imaging Spectrometer (MERIS). EARSeL eProceedings 3(3), 354–362 (2004)Google Scholar
  8. 8.
    Xiao, P., et al.: Methods and Accuracy Assessment for Land Use and Cover Classification Based on Medium Resolution Remotely Sensed Data. Remote Sensing for Land & Resources 4, 41–45 (2004)Google Scholar
  9. 9.
    Mücher, C.A., van de Velde, R.J., Nieuwenhuis, G.J.A.: Mapping Land Cover for Environmental Monitoring on a European Scale. Pilot Project for the Applicability of NOAA/AVHRR HRPT data.Report 93, SC-DLO, Wageningen, The Netherlands. RIVM report No. 402001004 (1994)Google Scholar
  10. 10.
    Malmberg, U.: BALANS Land Cover and Land Use Classification Methodology. BALANS report Balans-utv-24 2.0, Stockholm (2001)Google Scholar
  11. 11.
    Agrawal, S., Joshi, P.K., Shukla, Y., Roy, P.S.: Spot-Vegetation multi temporal data for classifying vegetation in South Central Asia. Communicated to Current Science Journal (2003)Google Scholar
  12. 12.
    Anonymous, Forest Cover Assessment in Asia. In: Proceeding of the International Workshop Asian Forest Cover Assessment and Conservation Issues (2002)Google Scholar
  13. 13.
    Lu, L., et al.: The Mapping and Validation of Land Cover in Northwest China from SPOT4-VEGETATION. Journal of Remote Sensing 7(3), 214–220 (2003)Google Scholar
  14. 14.
    Li, J., Guan, J.-D.: The Vegetation Classification of the Return Farmland to Pasture or Forest Region in Shaanxi-Gansu-Ningxia Based on SPOT/Vegetation Data. Agricultural Science & Tchenology 10(5), 179–183 (2009)MathSciNetGoogle Scholar
  15. 15.
    Song, Y., et al.: Study on Vegetation Cover Change in Northwest China Based on SPOT VEGETATION Data. Journal of Desert Reseatch 27(1), 89–93 (2007)Google Scholar
  16. 16.
    Xu, W., et al.: China Land Cover 2000 Using SPOT VGT S10 Data. Journal of Remote Sensing 9(2), 204–214 (2005)Google Scholar
  17. 17.
    Gong, P., et al.: Land Cover Mapping with MODIS NDVI Time-series Data in Northeastern China. In: The 9th International Symposium on Physical Measurements and Signatures in Remote Sensing, Beijing, China, October 17-19, pp. 12–415 (2005)Google Scholar
  18. 18.
    Liu, A., et al.: Land Cover Classification Based on MODIS Data in Area to the North—west of Beijing. Progress in Geography 25(2), 96–104 (2006)Google Scholar
  19. 19.
    Liu, A., et al.: Method for remote sensing monitoring of desertification based on MODIS and NOAA/AVHRR data. Transactions of the Chinese Society of Agricultural Engineering 23(10), 145–150 (2007)Google Scholar
  20. 20.
    Gong, P., et al.: On the Classification System of Land Cover in China Based on MODIS. Journal of QINGDAO University of Science and Technology (SOCIAL SCIENCES) 23(2), 79–83 (2007)Google Scholar
  21. 21.
    Gong, P., et al.: Progress of the Research on Classification System of Land Vegetation. China Journal of Agricultural Resources and Regional Planning 27(2), 35–40 (2006)Google Scholar
  22. 22.
    Anderson, J.R., Hardy, E., Roach, J., et al.: A land use and land cover classification system for use with remote sensing data. U.S. Geological Survey Profession Paper, Washington, DC (1976)Google Scholar
  23. 23.
    Anderson, J.R.: Toward more effective method of obtaining land use data in geographic research. The Progressional Geographer 13, 15–18 (1961)CrossRefGoogle Scholar
  24. 24.
    Yuan, X., et al.: Comparison and Analysis on Land Cover Remote Sensing Monitoring and typical Classification System. Journal of YUNNAN Polytechnic University 15(4), 8–10 (1999)Google Scholar
  25. 25.
    Sha, Z., et al.: Study on the Methods of Deriving the Information of Land Cover in the Arid Areas by Using TM Data. Arid Land Geography 28(1), 59–64 (2005)MathSciNetGoogle Scholar
  26. 26.
    Wang, L., et al.: Detecting the Areas at Risk of Desertification in XINJIANG Based on MODIS NDVI Imagery. Journal of Infrared and Millimeter Waves 26(6), 456–460 (2007)Google Scholar
  27. 27.
    Liu, A., et al.: Land use Classification in Arid and Semi-Arid Areas Using CBERS-1 Imagery. Journal of the Graduate School of the Chinese Academy of Science 20(3), 334–340 (2003)Google Scholar
  28. 28.
    Li, S.: A Synthetical Study on Land Use/Cover Change and Desertification in Arid and Semiarid Region. Lanzhou University (2006)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Yuechen Liu
    • 1
  • Zhiyuan Pei
    • 1
  • Quan Wu
    • 1
  • Lin Guo
    • 1
  • Hu Zhao
    • 1
  • Xiwei Chen
    • 1
  1. 1.Chinese Academy of Agricultural EngineeringBeijingChina

Personalised recommendations