Study of Quantitative Analysis for Moisture Content in Winter Wheat Leaves Using MSC-ANN Algorithm

  • Hao Ma
  • Haiyan Ji
  • Xue Liang
  • Zhenhong Rao
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 369)

Abstract

Reflectance spectra of winter wheat leaves specimens was acquired with portable spectroradiometer and integral sphere, after pretreatment with the method of multiplicative scatter correction(MSC), the principal components calculated were used as the inputs of artificial neural networks to build the Back–Propagation artificial neural networks model(BP-ANN), which can be used to predict moisture content of winter wheat leaves very well. In the article we made a study of quantitative analysis for moisture content of winter wheat leaves in booting and milk stage. The correlation coefficient(r) of predicted set in booting stage was 0.918, the standard deviation(SD) was 0.995 and the relative standard deviation(RSD) was 1.35%. And in milk stage r= 0.922, SD = 2.24, RSD = 3.37%. The model can truly predict the content of water in winter wheat leaves. Compared with the classical method, the artificial neural networks can build much better predicted model.

Keywords

MSC ANN Moisture Content Reflectance spectrum Quantitative analysis 

References

  1. 1.
    Dong, J., Niu, Z., Shen, Y.: Journal of Jiangxi Agricultural University  28(4), 587–592 (2006)Google Scholar
  2. 2.
    Elvidge, C.D.: Visible and near infared reflectance characteristics of dry plantma-terials. Int. J. Remote Sensing 11(11), 1775–1795 (1990)CrossRefGoogle Scholar
  3. 3.
    Mooney, H.A., Vitousek, P.M., Mastson, P.A.: Exchange of materials between ter-restrial ecosystems and the atmosphere. Science 238, 926–932 (1987)CrossRefGoogle Scholar
  4. 4.
    Xue, L., Luo, W., Cao, W., Tian, Y.: Journal of Sensing  7(1), 73–80 (2003)Google Scholar
  5. 5.
    Tanner, C.B.: Lant Temperature. Agronomy Journal 50, 210–211 (1963)CrossRefGoogle Scholar
  6. 6.
    Penuelas, J., Pinol, J., Ogaya, R., et al.: Estimation of Plant Water Concentration by the Reflectance Water index WI (R900/R970). International Journal of Remote Sensing 18, 2869–2872 (1997)CrossRefGoogle Scholar
  7. 7.
    Penuelas, J., Inoue, Y.: Reflectance Indices Indicative of Changes in Water and Pigment Contents of Peanut and Wheat Leaves. Photosynthetica 36(3), 355–360 (1999)CrossRefGoogle Scholar
  8. 8.
    Tian, Q., Gong, P., Zhao, C.: Chinese Science Bulletin  45(24), 2645–2650 (2000)Google Scholar
  9. 9.
    Wang, J., Zhan, C., Guo, X.: Scientia Agricultura Sinica  34(1), 104–107 (2001)Google Scholar
  10. 10.
    Fan, Z., Simone, G., Bi, Y.: Transaction of the Chinese Society of Agricultural Engineering  21, 215 (2005)Google Scholar
  11. 11.
    Ji, H., Wang, P., Yan, T.: Spectroscopy and Spectral Analysis  3(27), 514–516 (2007)Google Scholar
  12. 12.
    Zhao, X., Liu, S., Wang, P., Wang, J., Tian, Z.: Geography and Geo-Information Science 20(3), 36–39 (2004)MATHGoogle Scholar
  13. 13.
    Lu, Y., Qu, Y., Song, M.: Spectroscopy and Spectral Analysis  27(5), 877–880 (2007)Google Scholar
  14. 14.
    Pang, T., Yao, J., Du, L.: Spectroscopy and Spectral Analysis 7(27), 1337–1340 (2007)Google Scholar
  15. 15.
    Tang, C., Chen, M., Peng, Y.: Academic Periodical of Farm Products Processing  3(3), 52–54 (2007)Google Scholar
  16. 16.
    Bao, Y., Wu, Y., He, Y.: Joumal of Agricultural Mechanization Research (3), 162 (2004)Google Scholar
  17. 17.
    Qi, X., Zhang, L., Du., X.: spectroscopy and spectral Analysis  23(5), 870 (2003)Google Scholar
  18. 18.
    Liu, L., Wang, J., Zhang, Y.: Journal of Sensing  11(3), 289–296 (2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Hao Ma
    • 1
  • Haiyan Ji
    • 1
  • Xue Liang
    • 1
  • Zhenhong Rao
    • 2
  1. 1.Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of EducationChina Agricultural UniversityBeijingChina
  2. 2.College of ScienceChina Agricultural UniversityBeijingChina

Personalised recommendations