Feature Selection for Cotton Foreign Fiber Objects Based on PSO Algorithm

  • Hengbin Li
  • Jinxing Wang
  • Wenzhu Yang
  • Shuangxi Liu
  • Zhenbo Li
  • Daoliang Li
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 370)

Abstract

Due to large amount of calculation and slow speed of the feature selection for cotton fiber, a fast feature selection algorithm based on PSO was developed. It is searched by particle swarm optimization algorithm. Though search features by using PSO, it is reduced the number of classifier training and reduced the computational complexity. Experimental results indicate that, in the case of no loss of the classification performances, the method accelerates feature selection.

Keywords

Cotton Foreign fiber Feature selection Particle swarm optimization 

References

  1. 1.
    Zhao, N., Fu, C.X.: Real-time vision-based detecation of foreign fibers in cotton. Journal of Automation an Instrumentation 3, 24 (2008)Google Scholar
  2. 2.
    Liu, S., Zheng, W.X., Li, H.B., Wang, J.X.: Research of Dynamic Identification Techonlogy on Cotton Foreign Fibers. Computer and Computing Technologies in Angriculture IV, 389 (2010)Google Scholar
  3. 3.
    Zhu, Z.G., Ahi, D.J.: Digit limage processing. Publishing House of Elecronics Industry, Beijing (2003)Google Scholar
  4. 4.
    Wen, Z.Q., Cai, Z.X.: Conwergence analysis of Mean Shift algortithm. Journal of Software 2(18), 206–211 (2007)Google Scholar
  5. 5.
    Zhao, X.H., Li, D.L., Yang, W.Z.: Feature Selection for Cotton Foreign Fiber Objects Based on Improved Ant Colony Algorithm. Transactions of the Chinese Society for Agricultural Machinery 42(4), 168–173 (2011)Google Scholar
  6. 6.
    Yan, W.Z., Li, D.L., Wei, X.H., et al.: Feature selectiong for cotton foreign fiber objects based on improved genetic algorithm. Transactions of the Chinese Society for Agricultural Machinery 41(4), 173–178 (2010)Google Scholar
  7. 7.
    Lin, S.W., Ying, K.C., Chen, S.C., et al.: Particle swarm optimization for parametermianation and feature selection of support vector machines. Expert Systems with Applications 35(4), 1817–1824 (2008)CrossRefGoogle Scholar
  8. 8.
    Shima, K., Todoriki, M., Suzuki, A.: SVM-based feature selection of latent semantic feature. Pattern Recognition Letters 25(9), 1051–1057 (2004)CrossRefGoogle Scholar
  9. 9.
    Lin, J.Y., Ke, H.R., Chien, B.C., et al.: Classifier design with feature selection and feature extraction using layered genetic programming. Expert Systems with Applications 34(2), 1384–1393 (2008)CrossRefGoogle Scholar
  10. 10.
    Uncu, Ö., Türkşen, I.B.: A novel feature selection approach: Combining feature wrappers and filters. Information Sciences 177(2), 449–466 (2007)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Horng, M.-H.: Multi-class support vector machine for classification of the ultrasonic images of supraspinatus. Expert Systems with Applications 36(4), 8124–8133 (2009)CrossRefGoogle Scholar
  12. 12.
    Bermejo, S., Monegal, B., Cabestany, J.: Fish age categorization from otolith images using multi-class support vector machines. Fisheries Research 84(2), 247–253 (2007)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Hengbin Li
    • 1
  • Jinxing Wang
    • 1
  • Wenzhu Yang
    • 2
  • Shuangxi Liu
    • 1
  • Zhenbo Li
    • 2
  • Daoliang Li
    • 2
  1. 1.Mechanical and Electronic Engineering CollegeShandong Agricultural UniversityTaianChina
  2. 2.College of Information and Electrical EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations