Advertisement

Using Temporal Logic for Dynamic Reconfigurations of Components

  • Julien Dormoy
  • Olga Kouchnarenko
  • Arnaud Lanoix
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6921)

Abstract

Dynamic reconfigurations increase the availability and the reliability of component-based systems by allowing their architectures to evolve at run-time. This paper deals with the formal specification and verification of dynamic reconfigurations of those systems using architectural constraints and temporal logic patterns.

The proposals of the paper are applied to the Fractal component model. Given a Fractal reference implementation of a component-based system, we specify its dynamic reconfigurations using a temporal pattern logic for Fractal, called FTPL, characterizing the correct behaviour of the system under some architectural constraints. We study system reconfigurations on which we verify these requirements, in particular by reusing the FPath and FScript tools.

Keywords

Temporal Logic Linear Temporal Logic Safety Property Liveness Property Java Modelling Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aguilar Cornejo, M., Garavel, H., Mateescu, R., De Palma, N.: Specification and Verification of a Dynamic Reconfiguration Protocol for Agent-Based Applications. Research Report RR-4222, INRIA (2001)Google Scholar
  2. 2.
    Aguirre, N., Maibaum, T.: A temporal logic approach to the specification of reconfigurable component-based systems. Automated Software Engineering (2002)Google Scholar
  3. 3.
    Aldric, J.: Using types to enforce architectural structure. In: WICSA 2008, pp. 23–34 (February 2008)Google Scholar
  4. 4.
    Baldan, P., Corradini, A., König, B., Lluch Lafuente, A.: A temporal graph logic for verification of graph transformation systems. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 1–20. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Barringer, H., Gabbay, D.M., Rydeheard, D.E.: From runtime verification to evolvable systems. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 97–110. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Basin, D.A., Klaedtke, F., Müller, S.: Policy monitoring in first-order temporal logic. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 1–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Basin, D.A., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring of metric first-order temporal properties. In: IARCS, FSTTCS 2008, India, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. LIPIcs, vol. 2, pp. 49–60 (2008)Google Scholar
  8. 8.
    Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL Semantics for Runtime Verification. Journal of Logic and Computation, JLC (2010)Google Scholar
  9. 9.
    Bellegarde, F., Groslambert, J., Huisman, M., Julliand, J., Kouchnarenko, O.: Verification of liveness properties with JML. Technical report RR-5331, INRIA (2004)Google Scholar
  10. 10.
    Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: The fractal component model and its support in java. Softw., Pract. Exper. 36(11-12), 1257–1284 (2006)CrossRefGoogle Scholar
  11. 11.
    Chauvel, F., Barais, O., Plouzeau, N., Borne, I., Jézéquel, J.-M.: Composition et expression qualitative de politiques d’adaptation pour les composants Fractal. In: GDR GPL 2009, Toulouse, France (January 2009)Google Scholar
  12. 12.
    David, P.-C., Ledoux, T., Léger, M., Coupaye, T.: FPath and FScript: Language support for navigation and reliable reconfiguration of Fractal architectures. Annales des Télécommunications 64(1-2), 45–63 (2009)CrossRefGoogle Scholar
  13. 13.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: ICSE, pp. 411–420 (1999)Google Scholar
  14. 14.
    Giorgetti, A., Groslambert, J., Julliand, J., Kouchnarenko, O.: Verification of class liveness properties with java modelling language. In: IET Software (2008)Google Scholar
  15. 15.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Léger, M.: Fiabilité des Reconfigurations Dynamiques dans les Architectures à Composant. PhD thesis, Ecole Nationale Supérieure des Mines de Paris (2009)Google Scholar
  17. 17.
    Léger, M., Ledoux, T., Coupaye, T.: Reliable dynamic reconfigurations in the fractal component model. In: ARM 2007, pp. 1–6. ACM, New York (2007)Google Scholar
  18. 18.
    Léger, M., Ledoux, T., Coupaye, T.: Reliable dynamic reconfigurations in a reflective component model. In: Grunske, L., Reussner, R., Plasil, F. (eds.) CBSE 2010. LNCS, vol. 6092, pp. 74–92. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, Heidelberg (1992)CrossRefzbMATHGoogle Scholar
  20. 20.
    Redmond, B., Cahill, V.: Supporting unanticipated dynamic adaptation of application behaviour. In: Deng, T. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 205–230. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Trentelman, K., Huisman, M.: Extending jml specifications with temporal logic. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 334–348. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Julien Dormoy
    • 1
  • Olga Kouchnarenko
    • 1
  • Arnaud Lanoix
    • 2
  1. 1.University of Franche-ComtéBesançonFrance
  2. 2.Nantes UniversityNantesFrance

Personalised recommendations