Advertisement

Redundant Modular Reduction Algorithms

  • Vincent Dupaquis
  • Alexandre Venelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7079)

Abstract

We present modular reduction algorithms over finite fields of large characteristic that allow the use of redundant modular arithmetic. This technique provides constant time reduction algorithms. Moreover, it can also be used to strengthen the differential side-channel resistance of asymmetric cryptosystems. We propose modifications to the classic Montgomery and Barrett reduction algorithms in order to have efficient and resistant modular reduction methods. Our algorithms are called dynamic redundant reductions as random masks are intrinsically added within each reduction for a small overhead. This property is useful in order to thwart recent refined attacks on public key algorithms.

Keywords

Base Multiplication Reduction Algorithm Advance Encryption Standard Modular Reduction Modular Exponentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Amiel, F., Feix, B., Tunstall, M., Whelan, C., Marnane, W.P.: Distinguishing Multiplications from Squaring Operations. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 346–360. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Amiel, F., Feix, B., Villegas, K.: Power Analysis for Secret Recovering and Reverse Engineering of Public Key Algorithms. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 110–125. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Amiel, F., Villegas, K., Feix, B., Marcel, L.: Passive and Active Combined Attacks: Combining Fault Attacks and Side Channel Analysis. In: FDTC 2007, pp. 92–102. IEEE (2007)Google Scholar
  4. 4.
  5. 5.
    Barrett, P.: Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)Google Scholar
  6. 6.
    Bosselaers, A., Govaerts, R., Vandewalle, J.: Comparison of Three Modular Reduction Functions. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 175–186. Springer, Heidelberg (1994)Google Scholar
  7. 7.
    Clavier, C., Joye, M.: Universal Exponentiation Algorithm A First Step towards Provable SPA-Resistance. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 300–308. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Comba, P.: Exponentiation Cryptosystems on the IBM PC. IBM Syst. J. 29, 526–538 (1990)CrossRefGoogle Scholar
  9. 9.
    Dhem, J.F.: Design of an efficient public-key cryptographic library for RISC-based smart cards. Ph.D. thesis, Université Catholique de Louvain (1998)Google Scholar
  10. 10.
    Golić, J.D., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–212. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  13. 13.
    Menezes, A.J., Vanstone, S.A., Van Oorschot, P.C.: Handbook of Applied Cryptography. CRC Press, Inc. (1996)Google Scholar
  14. 14.
    Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power Analysis Attacks of Modular Exponentiation in Smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 144–724. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Montgomery, P.: Modular Multiplication Without Trial Division. Mathematics of computation 44(170), 519–521 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Schmidt, J.-M., Tunstall, M., Avanzi, R., Kizhvatov, I., Kasper, T., Oswald, D.: Combined Implementation Attack Resistant Exponentiation. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 305–322. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Scott, M., Szczechowiak, P.: Optimizing Multiprecision Multiplication for Public Key Cryptography. Cryptology ePrint Archive, Report 2007/299 (2007)Google Scholar
  18. 18.
    Smart, N., Oswald, E., Page, D.: Randomised Representations. Information Security IET 2(2), 19–27 (2008)CrossRefGoogle Scholar
  19. 19.
    Solinas, J.: Generalized Mersenne Numbers. Technical report (1999)Google Scholar
  20. 20.
    Walter, C.: Montgomery Exponentiation Needs no Final Subtractions. Electronics letters 35(21), 1831–1832 (2002)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Vincent Dupaquis
    • 1
  • Alexandre Venelli
    • 1
  1. 1.Inside SecureRoussetFrance

Personalised recommendations